Nobuaki Funahashi

Osaka University, Suika, Ōsaka, Japan

Are you Nobuaki Funahashi?

Claim your profile

Publications (4)30.71 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: The molecular basis of endothelial cell (EC)-specific gene expression is poorly understood. Roundabout 4 (Robo4) is expressed exclusively in ECs. We previously reported that the 3-kb 5'-flanking region of the human Robo4 gene contains information for lineage-specific expression in the ECs. Our studies implicated a critical role for GA-binding protein and specificity protein 1 (SP1) in mediating overall expression levels. However, these transcription factors are also expressed in non-ECs. In this study, we tested the hypothesis that epigenetic mechanisms contribute to EC-specific Robo4 gene expression. Methods and results: Bisulfite sequencing analysis indicated that the proximal promoter of Robo4 is methylated in non-ECs but not in ECs. Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine increased Robo4 gene expression in non-ECs but not in ECs. Proximal promoter methylation significantly decreased the promoter activity in ECs. Electrophoretic mobility shift assays showed that DNA methylation of the proximal promoter inhibited SP1 binding to the -42 SP1 site. In DNase hypersensitivity assays, chromatin condensation of the Robo4 promoter was observed in some but not all nonexpressing cell types. In Hprt (hypoxanthine phosphoribosyltransferase)-targeted mice, a 0.3-kb proximal promoter directed cell-type-specific expression in the endothelium. Bisulfite sequencing analysis using embryonic stem cell-derived mesodermal cells and ECs indicated that the EC-specific methylation pattern of the promoter is determined by demethylation during differentiation and that binding of GA-binding protein and SP1 to the proximal promoter is not essential for demethylation. Conclusions: The EC-specific DNA methylation pattern of the Robo4 proximal promoter is determined during cell differentiation and contributes to regulation of EC-specific Robo4 gene expression.
    Arteriosclerosis Thrombosis and Vascular Biology 05/2014; 34(7). DOI:10.1161/ATVBAHA.114.303818 · 6.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In previous studies on the mechanism underlying megakaryocyte-specific gene expression, several ETS motifs were found in each megakaryocyte-specific gene promoter. Although these studies suggested that several ETS family proteins regulate megakaryocyte-specific gene expression, only a few ETS family proteins have been identified. Platelet factor 4 (PF4) is a megakaryocyte-specific gene and its promoter includes multiple ETS motifs. We had previously shown that ETS-1 binds to an ETS motif in the PF4 promoter. However, the functions of the other ETS motifs are still unclear. The goal of this study was to investigate a novel functional ETS motif in the PF4 promoter and identify proteins binding to the motif. In electrophoretic mobility shift assays and a chromatin immunoprecipitation assay, FLI-1, ELF-1, and GABP bound to the -51 ETS site. Expression of FLI-1, ELF-1, and GABP activated the PF4 promoter in HepG2 cells. Mutation of a -51 ETS site attenuated FLI-1-, ELF-1-, and GABP-mediated transactivation of the promoter. siRNA analysis demonstrated that FLI-1, ELF-1, and GABP regulate PF4 gene expression in HEL cells. Among these three proteins, only FLI-1 synergistically activated the promoter with GATA-1. In addition, only FLI-1 expression was increased during megakaryocytic differentiation. Finally, the importance of the -51 ETS site for the activation of the PF4 promoter during physiological megakaryocytic differentiation was confirmed by a novel reporter gene assay using in vitro ES cell differentiation system. Together, these data suggest that FLI-1, ELF-1, and GABP regulate PF4 gene expression through the -51 ETS site in megakaryocytes and implicate the differentiation stage-specific regulation of PF4 gene expression by multiple ETS factors.
    PLoS ONE 09/2011; 6(9):e24837. DOI:10.1371/journal.pone.0024837 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently demonstrated that the 3-kb 5'-flanking region of the human ROBO4 gene directs endothelial cell-specific expression in vitro and in vivo. Moreover, a GA-binding protein (GABP)-binding motif at -119 was necessary for mediating promoter activity in vitro. The goal of the present study was to confirm the functional relevance of the -119 GABP-binding site in vivo. To that end, the Hprt locus of mice was targeted with a Robo4-LacZ transgenic cassette in which the GABP site was mutated. In other studies, the GABP mutation was introduced into the endogenous mouse Robo4 locus in which LacZ was knocked-in. Compared with their respective controls, the mutant promoters displayed a significant reduction in activity in embryoid bodies, embryos, and adult animals. Together, these data provide strong support for the role of the GABP-binding motif in mediating Robo4 expression in the intact endothelium.
    Blood 09/2008; 112(6):2336-9. DOI:10.1182/blood-2008-01-135079 · 10.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Robo4, a member of the roundabout family, is expressed exclusively in endothelial cells and has been implicated in endothelial cell migration and angiogenesis. Here we report the cloning and characterization of the human Robo4 promoter. The 3-kb 5'-flanking region directs endothelial cell-specific expression in vitro. Deletion and mutation analyses revealed the functional importance of two 12-bp palindromic DNA sequences at -2528 and -2941, 2 SP1 consensus motifs at -42 and -153, and an ETS consensus motif at -119. In electrophoretic mobility shift assays using supershifting antibodies, the SP1 motifs bound SP1 protein, whereas the ETS site bound a heterodimeric member of the ETS family, GA binding protein (GABP). These DNA-protein interactions were confirmed by chromatin immunoprecipitation assays. Transfection of primary human endothelial cells with small interfering RNA against GABP and SP1 resulted in a significant (approximately 50%) reduction in endogenous Robo4 mRNA expression. The 3-kb Robo4 promoter was coupled to LacZ, and the resulting cassette was introduced into the Hprt locus of mice by homologous recombination. Reporter gene activity was observed in the vasculature of adult organs (particularly in microvessels), tumor xenografts, and embryos, where it colocalized with the endothelial cell-specific marker CD31. LacZ mRNA levels in adult tissues and tumors correlated with mRNA levels for endogenous Robo4, CD31, and vascular endothelial cadherin. Moreover, the pattern of reporter gene expression was similar to that observed in mice in which LacZ was knocked into the endogenous Robo4 locus. Together, these data suggest that 3-kb upstream promoter of human Robo4 contains information for cell type-specific expression in the intact endothelium.
    Circulation Research 07/2007; 100(12):1712-22. DOI:10.1161/01.RES.0000269779.10644.dc · 11.02 Impact Factor