Nicholas J Barrows

Duke University Medical Center, Durham, NC, United States

Are you Nicholas J Barrows?

Claim your profile

Publications (6)61.55 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The issue of whether viruses are subject to restriction by endogenous microRNAs (miRNAs) and/or by virus-induced small interfering RNAs (siRNAs) in infected human somatic cells has been controversial. Here, we have addressed this question in two ways. Firstly, using deep sequencing, we demonstrate that infection of human cells by the RNA viruses dengue virus (DENV) or West Nile virus (WNV) does not result in the production of any virus-derived siRNAs or viral miRNAs. Secondly, to more globally assess the potential of small regulatory RNAs to inhibit virus replication, we have used gene editing to derive human cell lines that lack a functional Dicer enzyme and that therefore are unable to produce miRNAs or siRNAs. Infection of these cells with a wide range of viruses, including DENV, WNV, yellow fever virus, Sindbis virus, Venezuelan equine encephalitis virus, measles virus, influenza A virus, reovirus, vesicular stomatitis virus, human immunodeficiency virus type 1 or herpes simplex virus 1 (HSV-1) failed to reveal any enhancement in the replication of any of these viruses, although HSV-1, which encodes at least eight Dicer-dependent viral miRNAs, did replicate somewhat more slowly in the absence of Dicer. We conclude that most, and perhaps all, human viruses have evolved to be resistant to inhibition by endogenous human miRNAs during productive replication and that dependence on a cellular miRNA, as seen with hepatitis C virus, is rare. How viruses have evolved to avoid inhibition by endogenous cellular miRNAs, which are generally highly conserved during metazoan evolution, remains to be determined. Eukaryotic cells express a wide range of small regulatory RNAs, including miRNAs, that have the potential to inhibit the expression of mRNAs that show sequence complementarity. Indeed, previous work has suggested that endogenous miRNAs have the potential to inhibit viral gene expression and replication. Here, we demonstrate that the replication of a wide range of pathogenic viruses is not enhanced in human cells engineered to be unable to produce miRNAs, indicating that viruses have evolved to be resistant to inhibition by miRNAs. This result is important, as it implies that manipulation of miRNA levels is not likely to prove useful in inhibiting virus replication. It also focuses attention on the question of how viruses have evolved to resist inhibition by miRNAs and whether virus mutants that have lost this resistance might prove useful, for example in the development of attenuated virus vaccines.
    Journal of Virology 05/2014; · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dengue virus (DENV) is endemic throughout tropical regions of the world and there are no approved treatments or anti-transmission agents currently available. Consequently, there exists an enormous unmet need to treat the human diseases caused by DENV and block viral transmission by the mosquito vector. RNAi screening represents an efficient method to expand the pool of known host factors that could become viable targets for treatments or provide rationale to consider available drugs as anti-DENV treatments. We developed a high-throughput siRNA-based screening protocol that can identify human DENV host factors. The protocol herein describes the materials and the procedures necessary to screen a human cell line in order to identify genes which are either necessary for or restrict DENV propagation at any stage in the viral life cycle.
    Methods in molecular biology (Clifton, N.J.) 01/2014; 1138:285-99. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flaviviruses cause a wide range of severe diseases ranging from encephalitis to hemorrhagic fever. Discovery of host factors that regulate the fate of flaviviruses in infected cells could provide insight into the molecular mechanisms of infection and therefore facilitate the development of anti-flaviviral drugs. We performed genome-scale siRNA screens to discover human host factors required for yellow fever virus (YFV) propagation. Using a 2×2 siRNA pool screening format and a duplicate of the screen, we identified a high confidence list of YFV host factors. To find commonalities between flaviviruses, these candidates were compared to host factors previously identified for West Nile virus (WNV) and dengue virus (DENV). This comparison highlighted a potential requirement for the G protein-coupled receptor kinase family, GRKs, for flaviviral infection. The YFV host candidate GRK2 (also known as ADRBK1) was validated both in siRNA-mediated knockdown HuH-7 cells and in GRK(-/-) mouse embryonic fibroblasts. Additionally, we showed that GRK2 was required for efficient propagation of DENV and Hepatitis C virus (HCV) indicating that GRK2 requirement is conserved throughout the Flaviviridae. Finally, we found that GRK2 participates in multiple distinct steps of the flavivirus life cycle by promoting both entry and RNA synthesis. Together, our findings identified GRK2 as a novel regulator of flavivirus infection and suggest that inhibition of GRK2 function may constitute a new approach for treatment of flavivirus associated diseases.
    PLoS Neglected Tropical Diseases 09/2012; 6(9):e1820. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Negative-strand (NS) RNA viruses comprise many pathogens that cause serious diseases in humans and animals. Despite their clinical importance, little is known about the host factors required for their infection. Using vesicular stomatitis virus (VSV), a prototypic NS RNA virus in the family Rhabdoviridae, we conducted a human genome-wide siRNA screen and identified 72 host genes required for viral infection. Many of these identified genes were also required for infection by two other NS RNA viruses, the lymphocytic choriomeningitis virus of the Arenaviridae family and human parainfluenza virus type 3 of the Paramyxoviridae family. Genes affecting different stages of VSV infection, such as entry/uncoating, gene expression, and assembly/release, were identified. Depletion of the proteins of the coatomer complex I or its upstream effectors ARF1 or GBF1 led to detection of reduced levels of VSV RNA. Coatomer complex I was also required for infection of lymphocytic choriomeningitis virus and human parainfluenza virus type 3. These results highlight the evolutionarily conserved requirements for gene expression of diverse families of NS RNA viruses and demonstrate the involvement of host cell secretory pathway in the process.
    Proceedings of the National Academy of Sciences 11/2011; 108(47):19036-41. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA interference-based screening is a powerful new genomic technology that addresses gene function en masse. To evaluate factors influencing hit list composition and reproducibility, the authors performed 2 identically designed small interfering RNA (siRNA)-based, whole-genome screens for host factors supporting yellow fever virus infection. These screens represent 2 separate experiments completed 5 months apart and allow the direct assessment of the reproducibility of a given siRNA technology when performed in the same environment. Candidate hit lists generated by sum rank, median absolute deviation, z-score, and strictly standardized mean difference were compared within and between whole-genome screens. Application of these analysis methodologies within a single screening data set using a fixed threshold equivalent to a p-value < or = 0.001 resulted in hit lists ranging from 82 to 1140 members and highlighted the tremendous impact analysis methodology has on hit list composition. Intra- and interscreen reproducibility was significantly influenced by the analysis methodology and ranged from 32% to 99%. This study also highlighted the power of testing at least 2 independent siRNAs for each gene product in primary screens. To facilitate validation, the authors conclude by suggesting methods to reduce false discovery at the primary screening stage. In this study, they present the first comprehensive comparison of multiple analysis strategies and demonstrate the impact of the analysis methodology on the composition of the "hit list." Therefore, they propose that the entire data set derived from functional genome-scale screens, especially if publicly funded, should be made available as is done with data derived from gene expression and genome-wide association studies.
    Journal of Biomolecular Screening 08/2010; 15(7):735-47. · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue fever is the most frequent arthropod-borne viral disease of humans, with almost half of the world's population at risk of infection. The high prevalence, lack of an effective vaccine, and absence of specific treatment conspire to make dengue fever a global public health threat. Given their compact genomes, dengue viruses (DENV-1-4) and other flaviviruses probably require an extensive number of host factors; however, only a limited number of human, and an even smaller number of insect host factors, have been identified. Here we identify insect host factors required for DENV-2 propagation, by carrying out a genome-wide RNA interference screen in Drosophila melanogaster cells using a well-established 22,632 double-stranded RNA library. This screen identified 116 candidate dengue virus host factors (DVHFs). Although some were previously associated with flaviviruses (for example, V-ATPases and alpha-glucosidases), most of the DVHFs were newly implicated in dengue virus propagation. The dipteran DVHFs had 82 readily recognizable human homologues and, using a targeted short-interfering-RNA screen, we showed that 42 of these are human DVHFs. This indicates notable conservation of required factors between dipteran and human hosts. This work suggests new approaches to control infection in the insect vector and the mammalian host.
    Nature 05/2009; 458(7241):1047-50. · 38.60 Impact Factor