Marijke N Boersma

University of New South Wales, Kensington, New South Wales, Australia

Are you Marijke N Boersma?

Claim your profile

Publications (2)10.64 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cyclin E2, but not cyclin E1, is included in several gene signatures that predict disease progression in either tamoxifen-resistant or metastatic breast cancer. We therefore examined the role of cyclin E2 in antiestrogen resistance in vitro and its potential for therapeutic targeting through cyclin-dependent kinase (CDK) inhibition. High expression of CCNE2, but not CCNE1, was characteristic of the luminal B and HER2 subtypes of breast cancer and was strongly predictive of shorter distant metastasis-free survival following endocrine therapy. After antiestrogen treatment of MCF-7 breast cancer cells, cyclin E2 mRNA and protein were downregulated and cyclin E2-CDK2 activity decreased. However, this regulation was lost in tamoxifen-resistant (MCF-7 TAMR) cells, which overexpressed cyclin E2. Expression of either cyclin E1 or E2 in T-47D breast cancer cells conferred acute antiestrogen resistance, suggesting that cyclin E overexpression contributes to the antiestrogen resistance of tamoxifen-resistant cells. Ectopic expression of cyclin E1 or E2 also reduced sensitivity to CDK4, but not CDK2, inhibition. Proliferation of tamoxifen-resistant cells was inhibited by RNAi-mediated knockdown of cyclin E1, cyclin E2, or CDK2. Furthermore, CDK2 inhibition of E-cyclin overexpressing cells and tamoxifen-resistant cells restored sensitivity to tamoxifen or CDK4 inhibition. Cyclin E2 overexpression is therefore a potential mechanism of resistance to both endocrine therapy and CDK4 inhibition. CDK2 inhibitors hold promise as a component of combination therapies in endocrine-resistant disease as they effectively inhibit cyclin E1 and E2 overexpressing cells and enhance the efficacy of other therapeutics.
    Molecular Cancer Therapeutics 05/2012; 11(7):1488-99. · 5.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During estrogen-induced proliferation, c-Myc and cyclin D1 initiate independent pathways that activate cyclin E1-Cdk2 by sequestration and/or downregulation of the CDK inhibitor p21(Waf1/Cip1), without significant increases in cyclin E1 protein levels. In contrast, cyclin E2 undergoes a marked increase in expression, which occurs within 9 to 12 h of estrogen treatment of antiestrogen-pretreated MCF-7 breast cancer cells. Both E cyclins are important to estrogen action, as small interfering RNA (siRNA)-mediated knockdown of either cyclin E1 or cyclin E2 attenuated estrogen-mediated proliferation. Inducible expression of cyclin D1 upregulated cyclin E2, while siRNA-mediated knockdown of cyclin D1 attenuated estrogen effects on cyclin E2. However, manipulation of c-Myc levels did not profoundly affect cyclin E2. Cyclin E2 induction by estrogen was accompanied by recruitment of E2F1 to the cyclin E1 and E2 promoters, and cyclin D1 induction was sufficient for E2F1 recruitment. siRNA-mediated knockdown of the chromatin remodelling factor CHD8 prevented cyclin E2 upregulation. Together, these data indicate that cyclin E2-Cdk2 activation by estrogen occurs via E2F- and CHD8-mediated transcription of cyclin E2 downstream of cyclin D1. This contrasts with the predominant regulation of cyclin E1-Cdk2 activity via CDK inhibitor association downstream of both c-Myc and cyclin D1 and indicates that cyclins E1 and E2 are not always coordinately regulated.
    Molecular and Cellular Biology 07/2009; 29(17):4623-39. · 5.04 Impact Factor