Are you M. Chapelier?

Claim your profile

Publications (2)1.66 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: A large volume (1m3) spherical proportional counter has been developed at CEA/Saclay, for low flux neutron measurements. The high voltage is applied to a small sphere 15mm in diameter, located in the center of the counter and the wall of the counter is grounded. Neutrons can be measured successfully, with high sensitivity, using 3He gas in the detector. The proton and tritium energy deposition in the drift gaseous volume, from the reaction 3He(n,p)3H, can provide the neutron spectra from thermal neutrons up to several MeV. The detector has been installed in the underground laboratory in Modane (LSM) to measure the neutron background. The sphere has been has been filled with gas mixture of Ar + 2% CH4 +3gr He-3, at 275 mbar. The thermal neutron peak is well separated from the cosmic ray and gamma background, permitting of neutron flux calculation. Other potential applications requiring large volume of about 10 m in radius are described in detail in reference
    Journal of Physics Conference Series 02/2010; 203(1):012030.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new type of radiation detector based on a spherical geometry is presented. The detector consists of a large spherical gas volume with a central electrode forming a radial electric field. Charges deposited in the conversion volume drift to the central sensor where they are amplified and collected. We introduce a small spherical sensor located at the center acting as a proportional amplification structure. It allows high gas gains to be reached and operates in a wide range of gas pressures. Signal development and the absolute amplitude of the response are consistent with predictions. Sub-keV energy threshold with good energy resolution is achieved. This new concept has been proven to operate in a simple and robust way and allows reading large volumes with a single read-out channel. The detector performance presently achieved is already close to fulfill the demands of many challenging projects from low energy neutrino physics to dark matter detection with applications in neutron, alpha and gamma spectroscopy.
    Journal of Instrumentation 08/2008; · 1.66 Impact Factor