Luis Gustavo Costa da Rocha

Universidade do Extremo Sul Catarinense (UNESC), Cresciúma, Santa Catarina, Brazil

Are you Luis Gustavo Costa da Rocha?

Claim your profile

Publications (10)18.28 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the effects physical training exerts on markers of oxidative stress in rats with chronic kidney disease (CKD). Twenty-four male Wistar rats were divided into four groups (n=6): sham, CKD, exercise-sham and exercise-CKD. Surgical reduction of the renal mass was performed (5/6 nephrectomized) and exercise was conducted on a treadmill (50 min/day up to 1 km/h for, 5 days/week for eight weeks). Forty-eight hours after the last exercise session, blood (1 mL) was collected from the abdominal aorta and animals were decapitated. The left kidney was surgically removed and stored at -70 °C for subsequent analysis. An increase was observed in creatinine and urea levels, superoxide production, antioxidant enzymes, and oxidative damage in the CKD group, as compared to sham animals (p<0.05). Physical training made superoxide production and oxidative damage decrease in the CKD group (p<0.05), increasing SOD and GPX activity, though it did not increase the antioxidant effects of CAT, and renal parameters. Even without altering renal function in animals induced to CKD model, the results show that physical training is an important component in the treatment of CKD, because it exerted a positive influence on oxidative stress parameters, especially on the reduction in superoxide production and oxidative damage, as well as an improvement in the antioxidant defense system, like SOD and GPX.
    Life sciences 07/2012; 91(3-4):132-6. · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to evaluate the effects of impact exercise on the joint cartilage of rats with osteoarthritis (OA) induced by monosodium iodoacetate (MIA). Eighteen male rats were divided into three groups of six animals each: control, OA, and OA plus exercise (OAE). The OAE group trained on a treadmill for 8 weeks. Afterward, the right joints of the animals were washed with saline solution and joint lavage was used for biochemical analyses of myeloperoxidase (MPO) and enzyme superoxide dismutase (SOD) activities and total thiol content. The same limb provided samples of the articular capsule for analyses of MPO activity and total thiol content. The left joint was used for histological analysis. Our results indicate that MPO activity was increased in both OA groups in the lavage as well as the articular capsule, regardless of exercise status. SOD activity was increased in animals with OA, especially in the animals that had run on the treadmill. On the other hand, thiol content in the articular capsule and joint lavage decreased in the OA group, while the OAE group had values similar to those of the control group. The histological data indicate that animals that were submitted to running exercise showed a higher preservation rate of proteoglycan content in the superficial and intermediate areas of the joint cartilage. Our results show that physical training contributes to the preservation of joint cartilage in animals with OA and to increase the defense mechanism against oxidative stress.
    Osteoarthritis and Cartilage 08/2010; 18(8):1088-95. · 4.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reactive oxygen species play an important role in the pathogenesis of chronic kidney disease (CKD). Physical exercise was suggested as a useful approach to diminish impaired oxidative defense mechanisms. This study sought to observe the effects of physical training before the induction of renal lesions on oxidative stress parameters in animals induced for CKD. Twenty-four male Wistar rats were divided into four groups (n = 6): sham, sham plus exercise, CKD, and CKD plus exercise. Exercise groups performed physical training on a treadmill for 8 weeks (up to 1 km/h for 50 min/day, 5 days/week). Forty-eight hours after the final exercise session, a surgical reduction of renal mass was performed (5/6 nephrectomized). Thirty days later, blood samples were collected to determine serum creatinine and urea concentrations, and the right kidney was surgically removed and stored at -70 degrees C for later analysis of superoxide production, antioxidant enzymes (superoxide dismutase and catalase), and oxidative damage of lipids (thiobarbituric acid reactive susbstances level) and proteins (carbonyl groups and sulfhydryl content). A significant increase occurred in creatinine and urea levels, superoxide production, antioxidant enzymes, and oxidative damage in the CKD group, compared with sham-treated animals (P < .05). Physical training prevented superoxide production, and decreased the oxidative damage in the CKD group (P < .05), but did not increase the effect of antioxidants. Physical training before induction of a renal lesion is capable of improving oxidative damage parameters and oxidant production, without altering renal function and the antioxidant defense system.
    Journal of Renal Nutrition 03/2010; 20(3):169-75. · 1.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate the effect of different protocols of physical exercise on oxidative stress markers in mouse liver. Twenty-eight male CF1 mice (30-35 g) were distributed into 4 groups (n = 7) - untrained (UT), continuous running (CR), downhill running (D-HR), and intermittent running (IR) - and underwent an 8-week training program. Forty-eight hours after the last training session, the animals were killed, and their livers were removed. Blood lactate, creatine kinase, citrate synthase, thiobarbituric acid reactive species, carbonyl, superoxide dismutase (SOD), and catalase (CAT) activities were assayed. Results show a decrease in the level of lipoperoxidation and protein carbonylation in the CR and D-HR groups. SOD activity was significantly increased and CAT activity was reduced in the CR and D-HR groups. Our findings indicate that CR and D-HR may be important for decreasing oxidative damage and in the regulation of antioxidant enzymes (SOD and CAT) in the livers of trained mice.
    Applied Physiology Nutrition and Metabolism 03/2009; 34(1):60-5. · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several studies have reported biological effects of Mikania glomerata and Mikania laevigata, used in Brazilian folk medicine for respiratory diseases. Pneumoconiosis is characterized by pulmonary inflammation caused by coal dust exposure. In this work, we evaluated the effect of pretreatment with M. glomerata and M. laevigata extracts (MGE and MLE, respectively) (100 mg/kg, s.c.) on inflammatory and oxidative stress parameters in lung of rats subjected to a single coal dust intratracheal instillation. Rats were pretreated for 2 weeks with saline solution, MGE, or MLE. On day 15, the animals were anesthetized, and gross mineral coal dust or saline solutions were administered directly in the lung by intratracheal instillation. Fifteen days after coal dust instillation, the animals were killed. Bronchoalveolar lavage (BAL) was obtained; total cell count and lactate dehydrogenase (LDH) activity were determined. In the lung, myeloperoxidase activity, thiobarbituric acid-reactive substances (TBARS) level, and protein carbonyl and sulfhydryl contents were evaluated. In BAL of treated animals, we verified an increased total cell count and LDH activity. MGE and MLE prevented the increase in cell count, but only MLE prevented the increase in LDH. Myeloperoxidase and TBARS levels were not affected, protein carbonylation was increased, and the protein thiol levels were decreased by acute coal dust intratracheal administration. The findings also suggest that both extracts present an important protective effect on the oxidation of thiol groups. Moreover, pretreatment with MGE and MLE also diminished lung inflammatory infiltration induced by coal dust, as assessed by histopathologic analyses. The present study indicates that M. glomerata and M. laevigata might become good candidates for the prevention of lung oxidative injury caused by coal dust exposure.
    Journal of medicinal food 01/2009; 11(4):761-6. · 1.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies have shown that regular physical exercise of moderate intensity is an important tool for the control of pulmonary oxidative stress. The objective of this study was to examine the preventive and therapeutic effect of physical exercise on oxidative stress in the lungs of mice exposed to bleomycin (BLM). Thirty-six male mice (CF1, 30-35 g) received a single endotracheal dose of BLM (2.5 U/kg body weight dissolved in 0.25 mL 0.9% NaCl) or saline (0.9% NaCl) and were divided into six groups (n=6): untrained saline or BLM, preventive training saline or BLM, and therapeutic training saline or BLM. The trained groups underwent a program of progressive exercise on a treadmill for 8 weeks (up to 17 m.min-1, 50 min.day-1). The preventive group started the exercise program 62 days before the administration of BLM and the therapeutic group 62 days after the administration of BLM. All animals were killed by decapitation 48 hours after the experimental period, and the right lung was surgically removed for the determination of biochemical parameters. Hydroxyproline content, TBARS level, protein carbonylation, and superoxide dismutase (SOD) and catalase (CAT) activities were analyzed. The results showed that preventive and therapeutic training led to a significant reduction in hydroxyproline content and inhibited the increase in oxidative damage to lipids and proteins. However, only therapeutic training decreased SOD and CAT activities in mice exposed to BLM. The results suggest that preventive and therapeutic physical exercise is able to minimize pulmonary oxidative stress induced by BLM.
    Revista Brasileira de Cineantropometria e Desempenho Humano. 01/2009;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the acute effect of two swimming sessions on oxidative stress markers in trained individuals. Twelve male volunteers, students from UNESC (Universidade do Extremo Sul Catarinense, Criciuma, Santa Catarina, Brazil), with a mean age of 28 ± 7 years, initial weight of 72.9 ± 9 kg and height of 1.75 ± 0.08 cm, participated in the study. Blood samples were collected 24 hours before the sessions, immediately after the first and second session, and 24 hours after the end of the sessions. Aliquots were washed, red blood cells were lysed and plasma samples were stored at -80oC until the time of the biochemical assays. Creatine kinase (CK) activity, lipid peroxidation level, protein carbonylation, thiol content and catalase activity were determined. The results showed a significant increase in CK, lipoperoxidation and protein carbonylation and a decrease in thiol content after the second swimming session (p < 0.05) compared to pre-swimming levels. Catalase activity increased after the first and second swimming sessions. The main finding of the present study was that only the second swimming session resulted in oxidative stress.
    Revista Brasileira de Cineantropometria e Desempenho Humano. 01/2009;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to analyze the effects of intense exercise on brain redox status, associated with antioxidant supplementation of N-acetylcysteine (NAC), deferoxamine (DFX) or a combination of both. Seventy-two C57BL-6 adult male mice were randomly assigned to 8 groups: control, NAC, DFX, NAC plus DFX, exercise, exercise with NAC, exercise with DFX, and exercise with NAC plus DFX. They were given antioxidant supplementation, exercise training on a treadmill for 12 weeks, and sacrificed 48 h after the last exercise session. Training significantly increased (P < 0.05) soleus citrate synthase (CS) activity when compared to control. Blood lactate levels classified the exercise as intense. Exercise significantly increased (P < 0.05) oxidation of biomolecules and superoxide dismutase activity in striatum and hippocampus. Training significantly increased (P < 0.05) catalase activity in striatum. NAC and DFX supplementation significantly protected (P < 0.05) against oxidative damage. These results indicate intense exercise as oxidant and NAC and DFX as antioxidant to the hippocampus and the striatum.
    Neurochemical Research 06/2008; 33(5):729-36. · 2.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reactive oxygen species (ROS) play an important role in the pathogenesis of pulmonary injury and antioxidant therapy may be useful with impaired oxidative defense mechanism. This study examines the effect of N-acetylcysteine (NAC) and deferoxamine (DFX) on inflammatory indicators and oxidative stress in the lungs of mice exposed to bleomycin (BLM). The animals received endotracheally a single dose of BLM (2.5 U/kg body weight dissolved in 0.25 ml of 0.9% NaCl) or saline (0.9% NaCl) and were divided into eight groups (n=8): saline; BLM; saline+NAC; BLM+NAC; saline+DFX; BLM+DFX; saline+NAC+DFX; BLM+NAC+DFX. Treatments with NAC (20mg/kg) or DFX (30 mg/kg) were administered for 60 days after BLM exposure. Lactate dehydrogenase (LDH) activity and total cell count, neutrophil and protein concentration were determined in the bronchoalveolar lavage fluid (BALF). Lipid peroxidation thiobarbituric acid-reactive species (TBARS), oxidative protein damage (carbonyl contents), and catalase and superoxide dismutase activities were determined in the lung tissue. BLM administration resulted in lung lesion as determinated lung histology, which is almost completely prevented by NAC plus DFX. The results of total cell counts and neutrophils and LDH increased after BLM exposure and were reduced with NAC. DFX and NAC plus DFX also caused a significant decrease of LDH activity. The increased malondialdehyde equivalents and carbonyl contents in lung tissue produced by BLM were also prevented by NAC plus DFX. However, the isolated use of NAC increased lipid peroxidation. SOD activity increased after BLM exposure only in the group treated with DFX and catalase activity not was altered in the presence of BLM. Data presented here indicates that the isolated use of NAC had limited effects on BLM-induced pulmonary oxidative stress in mice. The use of DFX improves the defense response and in association with NAC may be a good alternative in the treatment or prevention of diseases that have ROS and iron involved in their pathogenesis.
    Pulmonary Pharmacology &amp Therapeutics 02/2008; 21(2):309-16. · 2.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Contusion injuries are a very common form of both athletic and non-athletic injury, that effect muscle function. Treatments to augment the normal repair and regeneration processes are important for a wide variety of patients. Therapeutic ultrasound has been claimed to promote tissue repair, especially by enhancing cell proliferation and protein synthesis. The present study aimed to investigate the effect of therapeutic pulsed ultrasound (TPU) on parameters of oxidative stress, namely thiobarbituric acid-reactive substances (TBARS), protein carbonyl content and the activities of antioxidant enzymes, catalase and superoxide dismutase (SOD), in skeletal muscle after injury. Wistar rats were submitted to an animal model of muscle (gastrocnemius) laceration. TPU was used once a day. One, three or five days after muscle laceration, the animals were killed by decapitation and oxidative stress parameters were evaluated. Serum CK levels were increased in muscle-injured animals, indicating that the laceration animal model was successful. TBARS were not altered after muscle injury, when compared to the sham group. Protein carbonyl content was increased after muscle laceration. Catalase and SOD activities were increased 1 day after muscle injury and not altered at days 3 and 5. TPU decreased TBARS levels after muscle laceration when compared to injured muscle animals without treatment. Protein carbonyl content evaluation presented similar results. It is tempting to speculate that TPU seems to protect the tissue from oxidative injury. TPU diminished catalase and SOD activities, especially on the first day following muscle laceration.
    Cell Biology International 06/2007; 31(5):482-8. · 1.64 Impact Factor