Kyeong-Mi Kim

Kyungnam University, Changnyeong, South Gyeongsang, South Korea

Are you Kyeong-Mi Kim?

Claim your profile

Publications (2)4.58 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated whether a hippotherapy simulator has influence on symmetric body weight bearing during gait in patients with stroke. Stroke patients were divided into a control group (n = 10) that received conventional rehabilitation for 60 min/day, 5 times/week for 4 weeks and an experimental group (n = 10) that used a hippotherapy simulator for 15 min/day, 5 times/week for 4 weeks after conventional rehabilitation for 45 min/day. Temporospatial gait assessed using OptoGait and trunk muscles (abdominis and erector spinae on affected side) activity evaluated using surface electromyography during sit-to-stand and gait. Prior to starting the experiment, pre-testing was performed. At the end of the 4-week intervention, we performed post-testing. Activation of the erector spinae in the experimental group was significantly increased compared to that in the control group (p < 0.01), whereas activation of the rectus abdominis decreased during sit-to-stand. Of the gait parameters, load response, single support, total double support, and pre-swing showed significant changes in the experimental group with a hippotherapy simulator compared to control group (p < 0.05). Moreover, activation of the erector spinae and rectus abdominis in gait correlate with changes of gait parameters including load response, single support, total double support, and pre-swing in experimental group. These findings suggest that use of a hippotherapy simulator to patients with stroke can improve asymmetric weight bearing by influencing trunk muscles.
    Neurorehabilitation 08/2013; · 1.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Traumatic brain injury (TBI) occurs when an outside force impacts the brain. The main problem associated with TBI is neuronal cell death of the brain, and the outcome of TBI ranges from complete recovery to permanent disability, and sometimes death. Physical exercise is known to ameliorate neurologic impairment induced by various brain insults. In the present study, we investigated the effects of treadmill exercise on short-term memory and apoptosis in the hippocampus following TBI in rats. TBI was induced by an electromagnetic-controlled cortical impact. The rats in the exercise group were forced to run on a treadmill for 30min once daily for 10 consecutive days, beginning 2days after induction of TBI. For the current study, a step-down avoidance task, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, Western blot for Bcl-2 and Bax, and immunohistochemistry for caspase-3 were conducted. The present results revealed that TBI impaired short-term memory, and increased DNA fragmentation and caspase-3 expression in the hippocampus. Induction of TBI also enhanced expression of pro-apoptotic factor Bax protein and suppressed expression of anti-apoptotic factor Bcl-2 protein in the hippocampus. Treadmill exercise alleviated short-term memory impairment, and decreased DNA fragmentation and caspase-3 expression in the hippocampus. In addition, treadmill exercise remarkably suppressed expression of Bax protein and slightly increased expression of Bcl-2 protein in TBI-induced rats. The present study showed that treadmill exercise might overcome TBI-induced apoptotic neuronal cell death, thus facilitating recovery following TBI.
    Physiology & Behavior 09/2010; 101(5):660-5. · 3.16 Impact Factor

Publication Stats

19 Citations
4.58 Total Impact Points

Institutions

  • 2013
    • Kyungnam University
      Changnyeong, South Gyeongsang, South Korea
  • 2010
    • Inje University
      KĊ­mhae, South Gyeongsang, South Korea