Kunpeng Hu

Sun Yat-Sen University, Shengcheng, Guangdong, China

Are you Kunpeng Hu?

Claim your profile

Publications (7)17.46 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: AimsCancer is not only influenced by specific tumor cells but also by the stromal microenvironment. Upon liver damage, activated hepatic stellate cells (aHSC) become highly proliferative myofibroblast-like cells and are thought to secrete molecules that influence development of hepatocellular carcinoma (HCC). The aim of this study was to investigate the role of aHSC in the development of HCC.Methods To assess if aHSC secreted factor(s) that promote microvascular endothelial cells (MECs) tube formation, MECs were plated with aHSC conditioned medium and tube formation analyzed by light microscopy. An established transendothelial migration assay with MECs was used to evaluate the role of aHSCs in migration and metastasis. A novel in vitro and in vivo orthotopic mouse HCC tumor model was used to investigate angiogenetic, proliferative, and metastatic activity of aHSCs.ResultsWe found that aHSCs promoted angiogenesis both in vitro and in vivo through vascular endothelial growth factor (VEGF). aHSC conditioned medium increased the ability of MECs to form tubes which was dependent upon aHSC-secreted VEGF. In addition, HCC orthogenic tumors derived from coinjection of H22 cells plus aHSCs into the hepatic lobes of mice had greater cell proliferation and vascularization, as evaluated by the presence of CD34, and VEGF expression, than tumors resulting from H22 injections alone. aHSCs also migrated from the primary tumor to sites of metastasis.Conclusion Our findings support aHSCs playing multiple roles in HCC development and metastasis.
    Hepatology Research 05/2014; · 2.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The molecular mechanisms of the development and progression of hepatocellular carcinoma (HCC) are poorly understood. The main objective of this study was to analyze the expression of Enabled [mammalian Ena (Mena)] protein and its clinical significance in human HCC. The Mena expression was examined at mRNA and protein levels by real-time quantitative polymerase chain reaction and Western blotting analysis in ten paired HCC tissues and the adjacent normal tissues. The expression of Mena protein in 81 specimens of HCC tissues was determined by immunohistochemistry. Associations of Mena expression with the clinicopathological features were analyzed, and prognosis of HCC patients was evaluated. The result shows the expression of Mena mRNA and protein was higher in HCC than in the adjacent normal tissues in ten paired samples. Mena was mainly accumulated in the cytoplasm of tumor cells and over-expressed in 40.74 % (33/81) patients by immunohistochemical staining. Over-expression of Mena was significantly associated with poor cellular differentiation (P = 0.025), advanced tumor stage (P = 0.003) and worse disease-free survival (DFS, P < 0.001). In addition, Mena is an independent prognostic factor for DFS in multivariate analysis (HR 2.309, 95 % CI 1.104-4.828; P = 0.026). Mena is up-regulated in HCC and associated with tumor differentiation and clinical stage. Mena may be an independent prognostic marker for DFS of HCC patients.
    Medical Oncology 05/2014; 31(5):939. · 2.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acute calculous cholecystitis is a common disease in cirrhotic patients. Laparoscopic cholecystectomy can resolve this problem but is performed based on the premise that the local inflammation must been controlled. An Initial ultrasound guided percutaneous transhepatic cholecystostomy may reduce the local inflammation and provide advantages in subsequent surgery. In this paper, we detailed our experience of treating acute severe calculous cholecystitis in patients with advanced cirrhosis by delayed laparoscopic cholecystectomy plus initiated ultrasound guided percutaneous transhepatic cholecystostomy and provided the analysis of the treatment effect. We hope this paper can provided a kind of standard procedure for this special disease; however, further prospective comparative randomized trials are needed to assess this treatment in cirrhotic patients with acute cholecystitis.
    Gastroenterology Research and Practice 01/2014; 2014:178908. · 1.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to retrospectively investigate the expression of the phosphate and tension homologue deleted on chromosome 10 (PTEN) protein and its prognostic role in hepatocellular carcinoma (HCC) with family aggregation resulting from hepatitis B and liver cirrhosis, which have not been established. Immunohistochemical analysis was performed to evaluate the PTEN protein expression in HCC and paired para-cancerous tissues from 79 patients with HCC caused by hepatitis B and liver cirrhosis. Of these cases, 34 represented HCC with family aggregation (HCCF group), and 45 represented HCC with no family aggregation (HCCN group). Follow-up data were collected for 3 months to 10 years and analysed for HCC recurrence, survival time and prognostic risk factors. The expression of the PTEN protein in the HCC tissue was dramatically lower in the HCCF group than in the HCCN group. The six-month, one-year and two-year overall recurrence (OR) rates of the HCCF group were significantly higher than those of the HCCN group. The one-year, two-year and five-year overall survival (OS) rates of the HCCF group were lower than those of the HCCN group. Impaired PTEN protein expression was an independent prognostic risk factor that was significantly correlated with OR and OS in HCC patients. Dramatically impaired PTEN protein expression in HCC patients with family aggregation resulting from hepatitis B and liver cirrhosis was correlated with OR and OS, and impaired PTEN expression was an independent risk factor for prognosis after radical surgery.
    Experimental Biology and Medicine 07/2013; · 2.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone marrow-derived mesenchymal stem cells (BMSCs) have been reported in many studies to reduce liver fibrosis. Apart from the paracrine mechanism by which the antifibrotic effects of BMSCs inhibit activated hepatic stellate cells (HSCs), the effects of direct interplay and juxtacrine signaling between the two cell types are poorly understood. The purpose of this study was to explore the underlying mechanisms by which BMSCs modulate the function of activated HSCs. We show here that BMSCs directly cocultured with HSCs significantly suppressed the proliferation and α-smooth muscle actin (α-SMA) expression of HSCs. Moreover, the Notch1 and Hes1 mRNA levels and the Hes1 protein level in cocultured HSCs were evidently higher than in other models. Blocking the Notch signaling pathway with Notch1 siRNA caused the increased expression of phospho-Akt and greater cell growth of cocultured HSCs. This effect was attenuated by the PI3K inhibitor LY294002. In conclusion, our results demonstrated that BMSCs remarkably inhibited the proliferation of HSCs through a cell-cell contact mode that was partially mediated by Notch pathway activation. In addition, the PI3K/Akt pathway is involved in HSC growth inhibition by the Notch pathway. These findings demonstrated that BMSCs directly modulate HSCs in vitro via Notch signaling cascades. Our results may provide new insights into the treatment of hepatic fibrosis with BMSCs.
    Life sciences 10/2011; 89(25-26):975-81. · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblast growth factor 2 (FGF-2) and its main receptor FGFR1 have been shown to promote hepatic stellate cell (HSC) activation and proliferation. However, scant information is available on the anti-fibrogenic activity of FGFR1 inhibitors. The aim of this study was to assess the impact of a selective FGFR1 tyrosine kinase inhibitor NP603 on HSC proliferation and hepatic fibrosis. We demonstrated that rat primary HSCs secreted significant amounts of FGF-2, and its tyrosine phosphorylation of FGFR1 was attenuated by NP603. NP603 inhibited HSC activaton by measuring the expression of α-smooth muscle actin (α-SMA) and the production of type I collagen using ELISA. Furthermore, NP603 (25 μM) in vitro strongly suppressed HSC growth induced by FGF-2 (10 ng/ml) and FCS. This effect correlated with the suppression of extracellular-regulated kinase (ERK) activity and its downstream targets cyclin D1 and p21. In addition, PO NP603 (20 mg·kg(-1)·day(-1)) administration significantly decreased hepatic collagen deposition and α-SMA expression in CCl(4)-treated rats. Collectively, these studies suggest that selective blocking of the FGFR1-mediated pathway could be a promising therapeutic approach for the treatment of hepatic fibrosis.
    AJP Cell Physiology 05/2011; 301(2):C469-77. · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multipotent mesenchymal stromal cells (MSC) have been reported to prevent the development of liver fibrosis and have emerged as a promising strategy for cell-based therapy. However, the underlying therapeutic mechanism remains unclear. Hepatic stellate cells (SC) activation is a pivotal event in the development of liver fibrosis. We hypothesized that MSC play an important role in regulating SC proliferation and apoptosis through paracrine mechanisms. To investigate the paracrine interactions between MSC and SC, a co-culture experimental model was developed using human MSC (hMSC) and human SC (hSC). We demonstrate that hMSC and hSC both express nerve growth factor (NGF) receptor p75. Results acquired from transwell co-culture experiments using hSC and hMSC showed that hMSC secrete NGF, which enhances hSC apoptosis. Transcription factor nuclear factor kappa B (NF-KappaB) and B cell leukemia-xl (Bcl-xl) take part in the process. These findings demonstrated that hMSC indirectly modulate activated hSC in vitro via NGF-mediated signaling cascades and provide a potential mechanism of how transplanted MSC are effective in treating liver fibrosis.
    Life sciences 07/2009; 85(7-8):291-5. · 2.56 Impact Factor