Kim Watt

University of Iowa, Iowa City, IA, United States

Are you Kim Watt?

Claim your profile

Publications (4)17.54 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: HDL cholesterol levels are decreased in Crohn's disease, a tumor necrosis factor-alpha (TNF-alpha)-driven chronic inflammatory condition involving the gastrointestinal tract. ATP-binding cassette transporter A1 (ABCA1), one of several liver X receptor (LXR) target genes, is a cell surface transporter that mediates the rate-controlling step in HDL synthesis. The regulation of ABCA1 and HDL cholesterol efflux by TNF-alpha was investigated in the human intestinal cell line Caco-2. In response to cholesterol micelles or T0901317, an LXR nonsterol agonist, TNF-alpha decreased the basolateral efflux of cholesterol to apolipoprotein A1 (apoA1). TNF-alpha, by attenuating ABCA1 promoter activity, markedly decreased ABCA1 gene expression without attenuating the expression of LXR-alpha, LXR-beta, and most other LXR target genes, such as ABCG1, FAS, ABCG8, scavenger receptor-B1 (SR-B1), and apoC1. TNF-alpha also decreased ABCA1 mass by markedly enhancing the rate of ABCA1 degradation and modestly inhibiting its rate of synthesis. Inhibitors of the nuclear factor-kappaB (NF-kappaB) pathway, which is activated by TNF-alpha, partially reverse the effect of TNF-alpha on ABCA1 protein expression. The results suggest that TNF-alpha, the major cytokine implicated in the inflammation of Crohn's disease, decreases HDL cholesterol levels by attenuating the expression of intestinal ABCA1 and cholesterol efflux to apoA1.
    The Journal of Lipid Research 06/2010; 51(6):1407-15. · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The origins of cholesterol utilized by intestinal ABCA1 were investigated in the human intestinal cell line Caco-2. Influx of apical membrane cholesterol increases ABCA1 mRNA and mass, resulting in enhanced efflux of HDL-cholesterol. Luminal (micellar) cholesterol and newly synthesized cholesterol are not transported directly to ABCA1 but reach the ABCA1 pool after incorporation into the apical membrane. Depleting the apical or the basolateral membrane of cholesterol by cyclodextrin attenuates the amount of cholesterol transported by ABCA1 without altering ABCA1 expression. Filipin added to the apical side but not the basal side attenuates ABCA1-mediated cholesterol efflux, suggesting that apical membrane "microdomains," or rafts, supply cholesterol for HDL. Preventing cholesterol esterification increases the amount of cholesterol available for HDL. Ezetimibe, a Niemann-Pick C1-like 1 protein inhibitor, does not alter ABCA1-mediated cholesterol efflux. U18666A and imipramine, agents that mimic cholesterol trafficking defects of Neimann-Pick type C disease, attenuate cholesterol efflux without altering ABCA1 expression; thus, intestinal NPC1 may facilitate cholesterol movement to ABCA1. ABCA1-mediated cholesterol efflux is independent of cholesterol synthesis. The results suggest that following incorporation into plasma membrane and rafts of the apical membrane, dietary/biliary and newly synthesized cholesterol contribute to the ABCA1 pool and HDL-cholesterol. NPC1 may have a role in this process.
    The Journal of Lipid Research 09/2008; 49(12):2605-19. · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Niemann-Pick C1-like 1 protein (NPC1L1) is the putative intestinal sterol transporter and the molecular target of ezetimibe, a potent inhibitor of cholesterol absorption. To address the role of NPC1L1 in cholesterol trafficking in intestine, the regulation of cholesterol trafficking by ezetimibe was studied in the human intestinal cell line, CaCo-2. Ezetimibe caused only a modest decrease in the uptake of micellar cholesterol, but markedly prevented its esterification. Cholesterol trafficking from the plasma membrane to the endoplasmic reticulum was profoundly disrupted by ezetimibe without altering the trafficking of cholesterol from the endoplasmic reticulum to the plasma membrane. Cholesterol oxidase-accessible cholesterol at the apical membrane was increased by ezetimibe. Cholesterol synthesis was modestly increased. Although the amount of cholesteryl esters secreted at the basolateral membrane was markedly decreased by ezetimibe, the transport of lipids and the number of lipoprotein particles secreted were not altered. NPC1L1 gene and protein expression were decreased by sterol influx, whereas cholesterol depletion enhanced NPC1L1 gene and protein expression. These results suggest that NPC1L1 plays a role in cholesterol uptake and cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. Interfering with its function will profoundly decrease the amount of cholesterol transported into lymph.
    The Journal of Lipid Research 09/2007; 48(8):1735-45. · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To address the effect of the n-3 fatty acid, docosahexaenoic acid (22:6), on proteins that play a role in cholesterol absorption, CaCo-2 cells were incubated with taurocholate micelles alone or micelles containing 22:6 or oleic acid (18:1). Compared with controls or 18:1, 22:6 did not interfere with the cellular uptake of micellar cholesterol. Apical cholesterol efflux was enhanced in cells incubated with 22:6. Cholesterol trafficking from the plasma membrane to the endoplasmic reticulum was decreased by 22:6. 22:6 decreased Niemann-Pick C1-Like 1 (NPC1L1) protein and mRNA levels without altering gene or protein expression of ACAT2, annexin-2, caveolin-1, or ABCG8. Peroxisome proliferator-activated receptor delta (PPARdelta) activation decreased NPC1L1 mRNA levels and cholesterol trafficking to the endoplasmic reticulum, suggesting that 22:6 may act through PPARdelta. Compared with hamsters fed a control diet or olive oil (enriched 18:1), NPC1L1 mRNA levels were decreased in duodenum and jejunum of hamsters ingesting fish oil (enriched 22:6). In an intestinal cell, independent of changes in ABCG8 expression, 22:6 increases the apical efflux of cholesterol. 22:6 interferes with cholesterol trafficking to the endoplasmic reticulum by the suppression of NPC1L1, perhaps through the activation of PPARdelta. Moreover, a diet enriched in n-3 fatty acids decreases the gene expression of NPC1L1 in duodenum and jejunum of hamster.
    The Journal of Lipid Research 03/2007; 48(2):395-404. · 4.39 Impact Factor

Publication Stats

81 Citations
17.54 Total Impact Points

Institutions

  • 2007–2010
    • University of Iowa
      • Department of Internal Medicine
      Iowa City, IA, United States