Khedoudja Nafa

Memorial Sloan-Kettering Cancer Center, New York, New York, United States

Are you Khedoudja Nafa?

Claim your profile

Publications (81)631.59 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Epidermal growth factor receptor (EGFR) exon 20 insertions (exon20ins) represent approximately 10% of EGFR-mutant lung adenocarcinomas, and are associated with resistance to EGFR tyrosine kinase inhibitors (TKIs). Clinical outcomes in comparison with patients with sensitizing EGFR mutations are not well established. Patients with stage IV lung adenocarcinomas with EGFR exon20ins were identified through routine molecular testing. Clinicopathologic data were collected. Overall survival (OS) was measured from the diagnosis of stage IV disease, and in patients treated with EGFR TKIs, the time to progression (TTP) on erlotinib was measured. One thousand eight hundred and eighty-two patients with stage IV lung adenocarcinomas were identified: 46 patients had EGFR exon20ins (2%), and 258 patients had an EGFR exon 19 deletion (exon19del)/L858R point mutation (14%). Among 11 patients with lung adenocarcinomas with EGFR exon20ins who received erlotinib, 3 patients (27%) had a partial response (FQEA, 1; ASV, 1; and unknown variant, 1). TTP for patients with EGFR exon20ins and patients with EGFR exon19del/L858R on erlotinib were 3 and 12 months, respectively (P < .01). Responses to chemotherapy were similar for patients with lung adenocarcinomas with EGFR exon20ins and patients with lung adenocarcinomas with EGFR exon19del/L858R. Median OS from the diagnosis of stage IV disease for patients with EGFR exon20ins and patients with EGFR exon19del/L858R was 26 months (95% confidence interval, 19 months-not reached n = 46) and 31 months (95% confidence interval, 28-33 months; n = 258), respectively (P = .53). The majority of patients with advanced lung adenocarcinomas harboring EGFR exon20ins do not respond to EGFR TKI therapy. Standard chemotherapy should be used as first-line therapy. These patients have an OS similar to that of patients with sensitizing EGFR mutations. Individuals with certain variants such as FQEA and ASV may respond to erlotinib. Cancer 2015. © 2015 American Cancer Society. © 2015 American Cancer Society.
    Cancer 06/2015; 121(18). DOI:10.1002/cncr.29493 · 4.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Melanotic Schwannomas (MS) are rare tumors that share histological features with melanocytic tumors and schwannomas. However, their genetics are poorly understood. To elucidate the genetic characteristics of MS, we performed genome-wide studies in a series of cases. Twelve MS cases were available for the study. Genomic DNAs extracted from formalin-fixed paraffin embedded tumor tissues were subjected to copy number (CN) and allelic imbalance (AI) analysis by Single Nucleotide Polymorphism (SNP)-array and screened for mutations in coding exons of 341 key cancer-associated genes using a hybrid capture-based next-generation sequencing (NGS) assay. Sanger sequencing was used to further verify recurrent mutations detected by NGS study. SNP-array analysis revealed remarkably stereotypic chromosomal abnormalities in MS. Hypodiploidy was common, typically involving monosomies of chromosomes 1, 2, and 17. All 12 samples showed mutations in PRKAR1A gene, including 2 cases with 2 mutations each. The 14 mutations were scattered across PRKAR1A, and most were inactivating mutations. AI on 17q, presenting as loss of heterozygosity with or without CN losses, combined with a PRKAR1A mutation was observed in 9/12 MS cases. The remaining 3 cases included the two samples harboring two mutations in PRKAR1A. MS exhibits a stereotypic pattern of chromosomal losses. In contrast, melanomas are typically characterized by the presence of multiple CN aberrations, without demonstrable differences in the frequency of losses and gains. Inactivation of both alleles of PRKAR1A by "two hits" observed in almost all cases underscores the central role of PRKAR1A in the pathogenesis of this neoplasm. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    Genes Chromosomes and Cancer 05/2015; 54(8). DOI:10.1002/gcc.22254 · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The identification of specific genetic alterations as key oncogenic drivers and the development of targeted therapies are together transforming clinical oncology and creating a pressing need for increased breadth and throughput of clinical genotyping. Next-generation sequencing assays allow the efficient and unbiased detection of clinically actionable mutations. To enable precision oncology in patients with solid tumors, we developed MSK-IMPACT, a hybridization capture-based next-generation sequencing assay for targeted deep sequencing of all exons and selected introns of 341 key cancer genes in formalin-fixed, paraffin-embedded tumors. Barcoded libraries from patient-matched tumor and normal samples were captured, sequenced, and subjected to a custom analysis pipeline to identify somatic mutations. Sensitivity, specificity, reproducibility of MSK-IMPACT were assessed through extensive analytical validation. We tested 284 tumor samples with previously known point mutations and insertions/deletions in 47 exons of 19 cancer genes. All known variants were accurately detected, and there was high reproducibility of inter- and intrarun replicates. The detection limit for low-frequency variants was approximately 2% for hotspot mutations and 5% for nonhotspot mutations. Copy number alterations and structural rearrangements were also reliably detected. MSK-IMPACT profiles oncogenic DNA alterations in clinical solid tumor samples with high accuracy and sensitivity. Paired analysis of tumors and patient-matched normal samples enables unambiguous detection of somatic mutations to guide treatment decisions. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
    The Journal of molecular diagnostics: JMD 03/2015; 17(3). DOI:10.1016/j.jmoldx.2014.12.006 · 4.85 Impact Factor
  • George Jour · Lit Wang · Wen Chen · John Healey · Lisa Choi · Khedoudja Nafa · Meera Hameed
    104th Annual Meeting of the; 02/2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The incidence of other primary neoplasms in gastrointestinal stromal tumor (GIST) patients is relatively high. Our aim was to better characterize the clinicopathologic and molecular relationships in a cohort of GIST patients. All GIST patients with tumor samples sent for molecular testing were identified via electronic medical records. Clinicopathologic characteristics of GIST and additional primary malignancies were analyzed. Of 260 patients, 50 (19 %) had at least one additional primary malignancy. In 33 patients, separate primary neoplasms predated their GIST diagnosis and most commonly included: prostate (n = 9), breast (n = 8), and hematologic (n = 5). Renal (n = 4) and hematologic (n = 3) malignancies were the most frequent cancers identified after GIST diagnosis. The majority (8 of 12, 66 %) of malignancies diagnosed after GIST were found incidentally. Patients who developed other malignancies after GIST more often had KIT exon 11 mutations (100 vs. 66 %, P = 0.01). In comparison to patients with only GIST, patients with a second primary neoplasm of any chronology had GISTs with increased mitotic rate (≥5 per 50 high-power fields) (P = 0.0006). Literature review revealed colorectal cancer, gastric, prostate, renal, leukemia, and desmoid-type fibromatosis as the most common secondary neoplasms. Nineteen percent of GIST patients develop other malignancies. This is the first report to describe a relationship between additional primary malignancy and both mutation and mitotic rate of GIST. Although the basis of these relationships remains to be investigated, caution in the clinical management of GIST patients with additional lesions is warranted.
    Annals of Surgical Oncology 01/2015; 22(8). DOI:10.1245/s10434-014-4332-z · 3.93 Impact Factor
  • Annual Meeting of the Association-for-Molecular-Pathology (AMP); 11/2014
  • Annual Meeting of the Association-for-Molecular-Pathology (AMP); 11/2014
  • J. Yao · Z. Zha · A. Oultache · K. Nafa · M. E. Arcila
    Annual Meeting of the Association-for-Molecular-Pathology (AMP); 11/2014
  • Annual Meeting of the Association-for-Molecular-Pathology (AMP); 11/2014
  • Annual Meeting of the Association-for-Molecular-Pathology (AMP); 11/2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Among gastrointestinal stromal tumors (GISTs) of 10–15% are negative for KIT and PDGFRA, and most of these cases are SDH deficient. Recent studies have provided data on additional molecular alterations such as KRAS in KIT mutant GISTs. We aimed to assess the frequency and spectrum of somatic mutations in common oncogenes as well as copy number variations in GISTs negative for KIT and PDGFRA mutations. GISTs with wild type KIT/PDGFRA were tested via next generation sequencing for somatic mutations in 341 genes. SDHB immunohistochemistry to evaluate for SDH deficiency was also performed. Of 267 GISTs tested for KIT and PDGFRA mutations, 15 were wild type, of which eight cases had material available for further testing. All eight cases had loss of SDHB expression and had various molecular alterations involving ARID1A, TP53, and other genes. One case had a KRAS G12V (c.35G>T) mutation in both the primary gastric tumor and a post-imatinib recurrence. This tumor had anaplastic features and was resistant to multiple tyrosine kinase inhibitors, ultimately resulting in cancer-related mortality within 2 years of diagnosis. In conclusion, KRAS mutations occur in rare GISTs with wild type KIT and PDGFRA. These tumors may display immunohistochemical positivity for KIT and primary resistance to tyrosine kinase inhibitors. © 2014 Wiley Periodicals, Inc.
    Genes Chromosomes and Cancer 11/2014; 54(3). DOI:10.1002/gcc.22230 · 4.04 Impact Factor
  • Annual Meeting of the Association-for-Molecular-Pathology (AMP); 11/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amplicon-based methods for targeted resequencing of cancer genes have gained traction in the clinic as a strategy for molecular diagnostic testing. An 847-amplicon panel was designed with the RainDance DeepSeq system, covering most exons of 28 genes relevant to acute myeloid leukemia and myeloproliferative neoplasms. We developed a paired-sample analysis pipeline for variant calling and sought to assess its sensitivity and specificity relative to a set of samples with previously identified mutations. Thirty samples with known mutations in JAK2, NPM1, DNMT3A, MPL, IDH1, IDH2, CEBPA, and FLT3, were profiled and sequenced to high depth. Variant calling using an unmatched Hapmap DNA control removed a substantial number of artifactual calls regardless of algorithm used or variant class. The removed calls were nonunique, had lower variant frequencies, and tended to recur in multiple unrelated samples. Analysis of sample replicates revealed that reproducible calls had distinctly higher variant allele depths and frequencies compared to nonreproducible calls. On the basis of these differences, filters on variant frequency were chosen to select for reproducible calls. The analysis pipeline successfully retrieved the associated known variant in all tested samples and uncovered additional mutations in some samples corresponding to well-characterized hotspot mutations in acute myeloid leukemia. We have developed a paired-sample analysis pipeline capable of robust identification of mutations from microdroplet-PCR sequencing data with high sensitivity and specificity.
    Journal of Molecular Diagnostics 09/2014; 16(5). DOI:10.1016/j.jmoldx.2014.05.006 · 4.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: More than 50% of patients with chondrosarcomas exhibit gain-of-function mutations in either isocitrate dehydrogenase 1 (IDH1) or IDH2. In this study, we performed genome-wide CpG methylation sequencing of chondrosarcoma biopsies and found that IDH mutations were associated with DNA hypermethylation at CpG islands but not other genomic regions. Regions of CpG island hypermethylation were enriched for genes implicated in stem cell maintenance/differentiation and lineage specification. In murine 10T1/2 mesenchymal progenitor cells, expression of mutant IDH2 led to DNA hypermethylation and an impairment in differentiation that could be reversed by treatment with DNA-hypomethylating agents. Introduction of mutant IDH2 also induced loss of contact inhibition and generated undifferentiated sarcomas in vivo. The oncogenic potential of mutant IDH2 correlated with the ability to produce 2-hydroxyglutarate. Together, these data demonstrate that neomorphic IDH2 mutations can be oncogenic in mesenchymal cells.
    Genes & development 09/2013; 27(18):1986-98. DOI:10.1101/gad.226753.113 · 10.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: A relative excess of nonneoplastic cells in frozen carcinoma samples is often a cause of false-negative results in molecular assays. Given the greater cohesiveness of epithelial tumor cells compared with nonneoplastic epithelium and mesenchymal stroma, the authors hypothesized that tumor procurement by touch imprinting would provide a simple, cost-effective method of obtaining enriched neoplastic cells compared with frozen whole-tumor samples. Methods: Eleven adenocarcinomas with known KRAS gene mutations were tested. Two sets of 8 touch imprint (TP) slides and 1 frozen whole-tumor sample (FS), both with a corresponding hematoxylin and eosin-stained slide, were obtained from each tumor. DNA from unstained TP and FS samples was tested for KRAS exon 2 mutations by Sanger sequencing. The percentage of carcinoma cells was determined by light microscopy of hematoxylin and eosin-stained slides. The fold increase in the mutant-enriched DNA in TP versus FS samples was determined by calculating the height ratio between the mutant and wild-type peaks on the sequencing electropherogram. Results: Using light microscopy, TP demonstrated a 1.1-fold to 3.5-fold (mean, 1.8-fold) enrichment in neoplastic cells compared with the FS. The mutant-to-wild-type peak height ratio was 1.4-fold to 7.1-fold (mean, 3.1-fold) higher in TP compared with the corresponding FS samples. The average amount of extracted DNA ranged from 145 ng to 7.9 μg per TP slide. Conclusions: The procurement of carcinoma samples by TP is rapid, simple, and inexpensive; consistently provides a tumor-enriched sample; is an excellent source of high-quality tumor DNA; and could compensate for the relatively low sensitivity of direct sequencing. Cancer (Cancer Cytopathol) 2013;121:354-360. © 2013 American Cancer Society.
    Cancer Cytopathology 07/2013; 121(7). DOI:10.1002/cncy.21292 · 3.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In contrast to other primary epidermal growth factor receptor (EGFR) mutations in lung adenocarcinomas, insertions in exon 20 of EGFR have been generally associated with resistance to EGFR-tyrosine kinase inhibitors. Their molecular spectrum, clinicopathologic characteristics, and prevalence are not well established. Tumors harboring EGFR exon 20 insertions were identified through an algorithmic screen of 1,500 lung adenocarcinomas. Cases were first tested for common mutations in EGFR (exons 19 and 21) and KRAS (exon 2) and, if negative, further analyzed for EGFR exon 20 insertions. All samples underwent extended genotyping for other driver mutations in EGFR, KRAS, BRAF, ERBB2/HER2, NRAS, PIK3CA, MEK1, and AKT by mass spectrometry; a subset was evaluated for ALK rearrangements. We identified 33 EGFR exon 20 insertion cases [2.2%, 95% confidence interval (CI), 1.6-3.1], all mutually exclusive with mutations in the other genes tested (except PIK3CA). They were more common among never-smokers (P < 0.0001). There was no association with age, sex, race, or stage. Morphologically, tumors were similar to those with common EGFR mutations but with frequent solid histology. Insertions were highly variable in position and size, ranging from 3 to 12 bp, resulting in 13 different insertions, which, by molecular modeling, are predicted to have potentially different effects on erlotinib binding. EGFR exon 20 insertion testing identifies a distinct subset of lung adenocarcinomas, accounting for at least 9% of all EGFR-mutated cases, representing the third most common type of EGFR mutation after exon 19 deletions and L858R. Insertions are structurally heterogeneous with potential implications for response to EGFR inhibitors. Mol Cancer Ther; 12(2); 1-10. ©2012 AACR.
    Molecular Cancer Therapeutics 01/2013; 12(2). DOI:10.1158/1535-7163.MCT-12-0620 · 5.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most gastrointestinal stromal tumors (GISTs) can be recognized by their monotonous cytologic features and overexpression of KIT oncoprotein. Altered morphology and loss of CD117 reactivity has been described previously after chronic imatinib treatment; however, this phenomenon has not been reported in imatinib-naive tumors. Eight patients with abrupt transition from a classic CD117-positive spindle cell GIST to an anaplastic CD117-negative tumor were investigated for underlying molecular mechanisms of tumor progression. Pathologic and molecular analysis was performed on each of the 2 components. Genomic DNA polymerase chain reaction for KIT, PDGFRA, BRAF, and KRAS hot spot mutations and fluorescence in situ hybridization for detecting KIT gene copy number alterations were performed. TP53 mutational analysis was performed in 5 cases. There were 7 men and 1 woman, with an age range of 23 to 65 years. Five of the primary tumors were located in the stomach, and 1 case each originated in the small bowel, colon, and rectum. In 3 patients, the dedifferentiated component occurred in the setting of imatinib resistance, whereas the remaining 5 occurred de novo. The dedifferentiated component had an anaplastic appearance, including 1 angiosarcomatous phenotype, with high mitotic activity and necrosis, and showed complete loss of CD117 (8/8) and CD34 (5/8) expression and de novo expression of either cytokeratin (4/8) or desmin (1/8). There was no difference in the KIT genotype between the 2 components. However, 2 imatinib-resistant tumors showed coexistence of KIT exon 11 and exon 13 mutations. Fluorescence in situ hybridization showed loss of 1 KIT gene in 3 cases and low-level amplification of KIT in 2 other cases in the CD117-negative component, compared with the CD117-positive area. TP53 mutation was identified in 1/5 cases tested, being present in both components. In summary, dedifferentiation in GIST may occur either de novo or after chronic imatinib exposure and can represent a diagnostic pitfall. This phenomenon is not related to additional KIT mutations, but might be secondary to genetic instability, either represented by loss of heterozygosity or low level of KIT amplification.
    The American journal of surgical pathology 01/2013; 37(3). DOI:10.1097/PAS.0b013e31826c1761 · 5.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activating mutations in the tyrosine kinase domain of HER2 (ERBB2) have been described in a subset of lung adenocarcinomas (ADCs) and are mutually exclusive with EGFR and KRAS mutations. The prevalence, clinicopathologic characteristics, prognostic implications, and molecular heterogeneity of HER2-mutated lung ADCs are not well established in U.S. patients. Lung ADC samples (N = 1,478) were first screened for mutations in EGFR (exons 19 and 21) and KRAS (exon 2), and negative cases were then assessed for HER2 mutations (exons 19-20) using a sizing assay and mass spectrometry. Testing for additional recurrent point mutations in EGFR, KRAS, BRAF, NRAS, PIK3CA, MEK1, and AKT was conducted by mass spectrometry. ALK rearrangements and HER2 amplification were assessed by FISH. We identified 25 cases with HER2 mutations, representing 6% of EGFR/KRAS/ALK-negative specimens. Small insertions in exon 20 accounted for 96% (24/25) of the cases. Compared with insertions in EGFR exon 20, there was less variability, with 83% (20/24) being a 12 bp insertion causing duplication of amino acids YVMA at codon 775. Morphologically, 92% (23/25) were moderately or poorly differentiated ADC. HER2 mutation was not associated with concurrent HER2 amplification in 11 cases tested for both. HER2 mutations were more frequent among never-smokers (P < 0.0001) but there were no associations with sex, race, or stage. HER2 mutations identify a distinct subset of lung ADCs. Given the high prevalence of lung cancer worldwide and the availability of standard and investigational therapies targeting HER2, routine clinical genotyping of lung ADC should include HER2. Clin Cancer Res; 18(18); 4910-8. ©2012 AACR.
    Clinical Cancer Research 07/2012; 18(18):4910-8. DOI:10.1158/1078-0432.CCR-12-0912 · 8.72 Impact Factor
  • Clinical neurology and neurosurgery 03/2012; 114(8):1197-200. DOI:10.1016/j.clineuro.2012.02.030 · 1.13 Impact Factor

Publication Stats

4k Citations
631.59 Total Impact Points


  • 1996–2015
    • Memorial Sloan-Kettering Cancer Center
      • • Department of Pathology
      • • Human Oncology & Pathogenesis Program
      • • Department of Medicine
      • • Clinical Genetics Service
      New York, New York, United States
  • 2002
    • Carmel Medical Center
      H̱efa, Haifa, Israel
  • 1993
    • Algiers University
      Alger, Alger, Algeria