Are you K Mörtlbauer?

Claim your profile

Publications (2)11.55 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently reported the formation of ultracold LiCs molecules in the rovibrational ground state X1sigma+, v" = 0,J" = 0 (J. Deiglmayr et al., Phys. Rev. Lett., 2008, 101, 133004). Here we discuss details of the experimental setup and present a thorough analysis of the photoassociation step including the photoassociation line shape. We predict the distribution of produced ground state molecules using accurate potential energy curves combined with an ab initio dipole transition moment and compare this prediction with experimental ionization spectra. Additionally we improve the value of the dissociation energy for the X1sigma+ state by high resolution spectroscopy of the vibrational ground state.
    Faraday Discussions 01/2009; 142:335-49; discussion 429-61. · 3.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ultracold LiCs molecules in the absolute ground state X1Sigma+, v'' = 0, J'' = 0 are formed via a single photoassociation step starting from laser-cooled atoms. The selective production of v'' = 0, J'' = 2 molecules with a 50-fold higher rate is also demonstrated. The rotational and vibrational state of the ground state molecules is determined in a setup combining depletion spectroscopy with resonant-enhanced multiphoton ionization time-of-flight spectroscopy. Using the determined production rate of up to 5 x 10(3) molecules/s, we describe a simple scheme which can provide large samples of externally and internally cold dipolar molecules.
    Physical Review Letters 10/2008; 101(13):133004. · 7.73 Impact Factor