J Pácha

Academy of Sciences of the Czech Republic, Praha, Praha, Czech Republic

Are you J Pácha?

Claim your profile

Publications (72)242.34 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple lines of evidence suggest the participation of the hippocampus in the feedback inhibition of the hypothalamus-pituitary-adrenal axis during stress response. This inhibition is mediated by glucocorticoid feedback due to the sensitivity of the hippocampus to these hormones. The sensitivity is determined by the expression of glucocorticoid (GR) and mineralocorticoid (MR) receptors and 11beta-hydroxysteroid dehydrogenase type 1 (11HSD1), an enzyme that regulates the conversion of glucocorticoids from inactive to active form. The goal of our study was to assess the effect of stress on the expression of 11HSD1, GR and MR in the ventral and dorsal region of the CA1 hippocampus in three different rat strains with diverse responses to stress: Fisher 344, Lewis and Wistar. Stress stimulated 11HSD1 in the ventral but not dorsal CA1 hippocampus of Fisher 344 but not Lewis or Wistar rats. In contrast, GR expression following stress was decreased in the dorsal but not ventral CA1 hippocampus of all three strains. MR expression was not changed in either the dorsal or ventral CA1 region. These results indicate that (1) depending on the strain, stress stimulates 11HSD1 in the ventral hippocampus, which is known to be involved in stress and emotion reactions whereas (2) independent of strain, stress inhibits GR in the dorsal hippocampus, which is predominantly involved in cognitive functions.
    Physiological research / Academia Scientiarum Bohemoslovaca 01/2014; · 1.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Colonic morphology and function change significantly during ontogenesis. In mammals, many colonic physiological functions are temporally controlled by the circadian clock in the colon, which is entrained by the central circadian clock in the suprachiasmatic nuclei (SCN). The aim of this present study was to ascertain when and how the circadian clock in the colon develops during the perinatal period and whether maternal cues and/or the developing pup SCN may influence the ontogenesis of the colonic clock. Daily profiles of clock genes Per1, Per2, Cry1, Cry2, Rev-erbα, Bmal1 and Clock expression in the colon underwent significant modifications since embryonic day 20 (E20) through postnatal days (P) 2, 10, 20 and 30 via changes in the mutual phasing among the individual clock gene expression rhythms, their relative phasing to the light/dark regime, and their amplitudes. An adult-like state was achieved around P20. The foster study revealed that during the prenatal period, the maternal circadian phase may partially modulate development of the colonic clock. Postnatally, the absence and/or presence of rhythmic maternal care affected the phasing of the clock gene expression profiles in pups at P10 and P20. A reversal in the colonic clock phase between P10 and P20 occurred in absence of rhythmic signals from the pup SCN. The data demonstrate ontogenetic maturation of the colonic clock and stress the importance of prenatal and postnatal maternal rhythmic signals for its development. These data may contribute to the understanding of colonic function-related diseases in newborn children.
    AJP Gastrointestinal and Liver Physiology 12/2013; · 3.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the effects of glucocorticoids on proliferation, differentiation and apoptosis are well known, and steroid hormones have been identified to play a role in pathogenesis and the development of various cancers, limited data are available regarding the relationship between the local metabolism of glucocorticoids and colorectal adenocarcinoma (CRC) formation. Glucocorticoid metabolism is determined by 11β-hydroxysteroid dehydrogenases type 1 and 2 (11HSD1, 11HSD2), which increase the local concentration of cortisol due to the reduction of cortisone, or decrease this concentration due to the oxidation of cortisol. The objective of this study was to evaluate the extent of 11HSD1 and 11HSD2 mRNA in pre-malignant colorectal polyps and in CRC. The specimens were retrieved from patients by endoscopic or surgical resection and the expression of 11HSD1 and 11HSD2 was measured by real-time PCR. The polyps were of the following histological types: hyperplastic polyps and adenomas with low- or high-grade dysplasia. The neoplastic tissue of CRC obtained during tumor surgery was also studied. It was found that 11HSD2 was not only downregulated in CRC but already in the early stages of neoplastic transformation (adenoma with low-grade dysplasia). In contrast, the level of 11HSD1 was significantly increased in CRC but not in pre-malignant polyps. The results demonstrate that the downregulation of 11HSD2 gene expression is a typical feature of the development of colorectal polypous lesions and their transformation into CRC.
    Histology and histopathology 11/2013; · 2.28 Impact Factor
  • Source
    M Hock, M Soták, M Kment, J Pácha
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased colonic Cl(-) secretion was supposed to be a causative factor of diarrhea in inflammatory bowel diseases. Surprisingly, hyporesponsiveness to Cl(-) secretagogues was later described in inflamed colon. Our aim was to evaluate changes in secretory responses to cholinergic agonist carbachol in distal and proximal colon during colitis development, regarding secretory activity of enteric nervous system (ENS) and prostaglandins. Increased responsiveness to carbachol was observed in both distal and proximal colon after 3 days of 2 % dextran sodium sulfate (DSS) administration. It was measured in the presence of mucosal Ba(2+) to emphasize Cl(-) secretion. The described increase was abolished by combined inhibitory effect of tetrodotoxin (TTX) and indomethacin. Indomethacin also significantly reduced TTX-sensitive current. On the 7th day of colitis development responsiveness to carbachol decreased in distal colon (compared to untreated mice), but did not change in proximal colon. TTX-sensitive current did not change during colitis development, but indomethacin-sensitive current was significantly increased the 7th day. Decreased and deformed current responses to serosal Ba(2+) were observed during colitis induction, but only in proximal colon. We conclude that besides inhibitory effect of DSS on distal colon responsiveness, there is an early stimulatory effect that manifests in both distal and proximal colon.
    Physiological research / Academia Scientiarum Bohemoslovaca 12/2011; 60(6):921-31. · 1.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The intestinal transport of nutrients exhibits distinct diurnal rhythmicity, and the enterocytes harbor a circadian clock. However, temporal regulation of the genes involved in colonic ion transport, i.e., ion transporters and channels operating in absorption and secretion, remains poorly understood. To address this issue, we assessed the 24-h profiles of expression of genes encoding the sodium pump (subunits Atp1a1 and Atp1b1), channels (α-, β-, and γ-subunits of Enac and Cftr), transporters (Dra, Ae1, Nkcc1, Kcc1, and Nhe3), and the Na(+)/H(+) exchanger (NHE) regulatory factor (Nherf1) in rat colonic mucosa. Furthermore, we investigated temporal changes in the spatial localization of the clock genes Per1, Per2, and Bmal1 and the genes encoding ion transporters and channels along the crypt axis. In rats fed ad libitum, the expression of Atp1a1, γEnac, Dra, Ae1, Nhe3, and Nherf1 showed circadian variation with maximal expression at circadian time 12, i.e., at the beginning of the subjective night. The peak γEnac expression coincided with the rise in plasma aldosterone. Restricted feeding phase advanced the expression of Dra, Ae1, Nherf, and γEnac and decreased expression of Atp1a1. The genes Atp1b1, Cftr, αEnac, βEnac, Nkcc1, and Kcc1 did not show any diurnal variations in mRNA levels. A low-salt diet upregulated the expression of βEnac and γEnac during the subjective night but did not affect expression of αEnac. Similarly, colonic electrogenic Na(+) transport was much higher during the subjective night than the subjective day. These findings indicate that the transporters and channels operating in NaCl absorption undergo diurnal regulation and suggest a role of an intestinal clock in the coordination of colonic NaCl absorption.
    AJP Gastrointestinal and Liver Physiology 09/2011; 301(6):G1066-74. · 3.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 11beta-Hydroxysteroid dehydrogenase 1 (11HSD1) regulates local glucocorticoid activity and plays an important role in various diseases. Here, we studied whether arthritis modulates 11HSD1, what is the role of pro-inflammatory cytokines in this process and whether altered local metabolism of glucocorticoids may contribute to the feedback regulation of inflammation. Adjuvant arthritis increased synovial 11HSD1 mRNA and 11-reductase activity but treatments with tumor necrosis factor alpha (TNF-alpha) and interleukin 1beta (IL-1beta) antagonists etanercept and anakinra reduced 11HSD1 upregulation. Treatment with carbenoxolone, an 11HSD inhibitor, increased expression of TNF-alpha, cyclooxygenase 2, and osteopontin mRNA without any changes in the plasma levels of corticosterone. Similar changes were observed when arthritic rats were treated with RU486, an antagonist of GR. This study suggests that arthritis upregulates synovial 11HSD1, this upregulation is controlled by TNF-alpha and IL-1beta and that the increased supply of local corticosterone might contribute to feedback regulation of inflammation.
    Molecular and Cellular Endocrinology 03/2010; 323(2):155-60. · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Elevated levels of survivin, telomerase catalytic subunit (TERT), integrin-linked kinase (ILK), cyclooxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS) and the regulatory factors c-MYB and Tcf-4 are often found in human cancers including colorectal cancer (CRC) and have been implicated in the development and progression of tumorigenesis. The aim of this study was to determine the expression of these genes in mouse models of sporadic and colitis-associated CRC. To address these issues, we used qRT-PCR approach to determine changes in gene expression patterns of neoplastic cells (high-grade dysplasia/intramucosal carcinoma) and surrounding normal epithelial cells in A/J and ICR mouse strains using laser microdissection. Both strains were injected with azoxymethane and ICR mice were also given drinking water that contained 2% dextran sodium sulphate. In both sporadic (A/J mice) and colitis-associated (ICR mice) models of CRC, the levels of TERT mRNA, COX-2 mRNA and Tcf-4 mRNA were higher in neoplastic cells than in surrounding normal epithelial cells. In contrast, survivin mRNA was upregulated only in neoplastic cells from A/J mice and ILK mRNA was upregulated only in neoplastic cells from ICR mice. However, the expression of iNOS mRNA was similar in normal and neoplastic cells in both models and c-MYB mRNA was actually downregulated in neoplastic cells compared with normal cells in both models. These findings suggest that the genetic background and/or the molecular mechanisms of tumorigenesis associated with genotoxic insults and colonic inflammation influence the gene expression of mTERT, COX-2, Tcf-4, c-MYB, ILK and survivin in colon epithelial neoplasia.
    International Journal of Experimental Pathology 02/2010; 91(1):44-53. · 2.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory bowel diseases including long-standing ulcerative colitis (UC) have an increased risk of evolving into colorectal cancer (CRC). The overexpression of some proproliferative and antiapoptotic genes, such as survivin, telomerase catalytic subunit (hTERT), integrin-linked kinase (ILK), and regulatory factors c-MYB and Tcf-4, has been implicated in the development and progression of several human malignancies including CRC. In this study we analyzed the expression alterations of these markers and proinflammatory enzymes cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) during the transition of colonic mucosa from chronic inflammation to epithelial neoplasia in biopsies of UC patients using quantitative real-time polymerase chain reaction and immunohistochemistry; additionally, we compared the expression profiles of this gene panel in samples of patients with CRC after tumor resection and in human tumor xenografts of SW620 malignant colonic cells. The transcript levels of survivin, c-MYB, COX-2, iNOS, and Tcf-4 showed a statistically significant increase during neoplastic transformation of UC patient colonic mucosa, whereas hTERT and ILK were not elevated. In contrast, the specimens of CRC showed upregulated expression of not only survivin, c-MYB, Tcf-4, COX-2, and iNOS but also hTERT. A similar expression profile was observed in human tumor xenografts in which all transcripts with the exception of c-MYB were upregulated. These results suggest that telomerase and ILK activation occurs during the later stages of carcinoma progression, whereas upregulation of survivin, c-MYB, and Tcf-4 is a feature of the early stage of development of neoplasia, and thus, they might serve as early indicators for UC-associated colorectal carcinogenesis.
    Inflammatory Bowel Diseases 12/2009; 16(7):1127-37. · 5.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Placental 11 beta-hydroxysteroid dehydrogenase type 2 (11 beta-HSD2) is the key enzyme which protects the fetus from overexposure to glucocorticoids (GCs) by their oxidation into inactive derivates. Several recent studies suggest that 11 beta-HSD2 expression is subjected to regulation by antenatal steroid therapy. In our study we investigated the effect of two commonly used synthetic steroids, dexamethasone (DXM) and betamethasone (BTM), on the expression and function of 11 beta-HSD2 in the rat placenta. Pregnant rats were pretreated with low (0.2mg/kg) or high (5mg/kg and 11.5mg/kg for DXM and BTM, respectively) i.m. doses of GCs. 11 beta-HSD2 expression was investigated using real-time RT-PCR and Western blotting; conversion capacity of 11 beta-HSD2 was assessed by dual perfusion of the rat placenta. Significant increase in placental 11 beta-HSD2 mRNA expression was found in rats treated with DXM, however, this alteration was not observed on protein level. BTM had no effect on either mRNA or protein levels of 11 beta-HSD2. Functional studies revealed that both GCs significantly reduced the metabolism of corticosterone by the placenta. Our data indicate that placental barrier function mediated by 11 beta-HSD2 might be considerably impaired by the antenatal therapy with DXM and BTM. In addition, the discrepancy between expressional and functional studies suggests that sole analysis of expressional changes of 11 beta-HSD2 at mRNA and/or protein levels cannot convincingly predict the role of GC treatment on 11 beta-HSD2 function in the placental barrier.
    Reproductive Toxicology 08/2009; 28(1):46-51. · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Circadian clocks were recently discovered in the rat and mouse colon as well as mouse stomach and jejunum. The aim of this study was to determine whether clocks in the upper part of the gut are synchronized with those in the lower part, or whether there is a difference in their circadian phases. Moreover, the profiles of core clock-gene expression were compared with the profiles of the clock-driven Wee1 gene expression in the upper and lower parts of the gut. Adult rats were transferred to constant darkness on the day of sampling. 24 h expression profiles of the clock genes Per1, Per2, Rev-erbalpha, and Bmal1 and the cell-cycle regulator Wee1 were examined by a reverse transcriptase-polymerase chain reaction within the epithelium of the rat duodenum, ileum, jejunum, and colon. In contrast to the duodenum, the rhythms in expression of all genes but Rev-erbalpha and Bmal1 in the colon exhibited non-sinusoidal profiles. Therefore, a detailed analysis of the gene expression every 1 h within the 12 h interval corresponding to the previous lights-on was performed. The data demonstrate that rhythmic profiles of the clock gene Per1, Per2, Bmal1, Rev-erbalpha, and clock-driven Wee1 expression within the epithelium from different parts of the rat gut exhibited a difference in phasing, such that the upper part of the gut, as represented by the duodenum, was phase-advanced to the lower part, as represented by the distal colon. Our data demonstrate that the circadian clocks within each part of the gut are mutually synchronized with a phase delay in the cranio-caudal axis. Moreover, they support the view that the individual circadian clocks may control the timing of cell cycle within different regions of the gut.
    Chronobiology International 06/2009; 26(4):607-20. · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Corticosteroids are known to not only regulate electrolyte homeostasis but also play a role in the cardiovascular system, including myocardial remodeling. Because transgenic mice that overexpress 11beta-hydroxysteroid dehydrogenase (11HSD) type 2 in cardiomyocytes have been shown to spontaneously develop cardiac hypertrophy and fibrosis, we investigated whether changes in the cardiac metabolism of glucocorticoids accompany remodeling of the heart under physiological conditions. In the present study, glucocorticoid metabolism and 11HSD2 were explored in the hearts of rats exposed to chronic intermittent hypobaric hypoxia (CIH), which induces hypertrophy and fibrosis of the right and less of the left ventricle. We first demonstrated that adaptation to CIH led to a significant increase in 11HSD2 transcript levels and activity in the myocardium. In contrast, neither 11HSD1 activity and mRNA level nor the abundance of mineralocorticoid and glucocorticoid receptor mRNA were up-regulated. The adaptation to CIH also led to an increase of 11HSD2 mRNA in isolated cardiomyocytes, whereas 11HSD1, glucocorticoid receptor, and mineralocorticoid receptor mRNA levels were not changed in comparison with the cardiomyocytes of control normoxic rats. The changes in cardiac metabolism of glucocorticoids were accompanied by inflammatory responses. The expression levels of the proinflammatory markers cyclooxygenase-2 and osteopontin were significantly increased in both the myocardium and the cardiomyocytes isolated from rats exposed to CIH. These findings suggest that myocardial remodeling induced by CIH is associated with the up-regulation of cardiac 11HSD2. Consequently, local metabolism of glucocorticoids could indeed play a role in cardiac hypertrophy and fibrosis.
    Endocrinology 06/2009; 150(9):4270-7. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to investigate the role of 11beta-hydroxysteroid dehydrogenases (11HSD1 and 11HSD2) in determining the fetal concentration of glucocorticoids. The expression patterns for mRNA abundance, protein level, and enzyme activities of placental and fetal 11HSD1 and 11HSD2 were assessed from embryonic day 13 (E13) to day 21 (E21; term E22). The transplacental passage of maternal corticosterone and its contribution to fetal glucocorticoids was also studied. Placental 11HSD1 mRNA decreased between days E13 and E14 and then remained at much lower values up to E21. Similarly, NADP+-dependent 11beta-oxidation and 11-reduction were lower in late gestation. In contrast, placental 11HSD2 mRNA and protein decreased between E13 and E21. Dithiothreitol increased the activity of 11HSD2 and the output of 11-dehydrocorticosterone into fetal circulation.The fetal activity of 11HSD1 increased and 11HSD2 decreased between E16 and E21. The final third of gestation is accompanied by reciprocal changes in placental and fetal metabolism of corticosterone due to changes in 11HSD1 and 11HSD2 not only at the level of transcription but also at a posttranslational level.
    Reproductive sciences (Thousand Oaks, Calif.) 10/2008; 15(9):921-31. · 2.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent in vitro studies have shown the involvement of pro-inflammatory cytokines in the regulation of the local metabolism of glucocorticoids via 11beta-hydroxysteroid dehydrogenase type 1 and type 2 (11HSD1 and 11HSD2). However, direct in vivo evidence for a relationship among the local metabolism of glucocorticoids, inflammation and steroid enzymes is still lacking. We have therefore examined the changes in the local metabolism of glucocorticoids during colonic inflammation induced by TNBS and the consequences of corticosterone metabolism inhibition by carbenoxolone on 11HSD1, 11HSD2, cyclooxygenase 2 (COX-2), mucin 2 (MUC-2), tumor necrosis factor alpha (TNF-alpha), and interleukin 1beta (IL-1beta). The metabolism of glucocorticoids was measured in tissue slices in vitro and their 11HSD1, 11HSD2, COX-2, MUC-2, TNF-alpha, and IL-1beta mRNA abundances by quantitative reverse transcription-polymerase chain reaction. Colitis produced an up-regulation of colonic 11HSD1 and down-regulation of 11HSD2 in a dose-dependent manner, and these changes resulted in a decreased capacity of the inflamed tissue to inactivate tissue corticosterone. Similarly, 11HSD1 transcript was increased in colonic intraepithelial lymphocytes of TNBS-treated rats. Topical intracolonic application of carbenoxolone stimulated 11HSD1 mRNA and partially inhibited 11HSD2 mRNA and tissue corticosterone inactivation and these changes were blocked by RU-486. The administration of budesonide mimicked the effect of carbenoxolone. In contrast to the local metabolism of glucocorticoids, carbenoxolone neither potentiates nor diminishes gene expression for COX-2, TNF-alpha, and IL-1beta, despite the fact that budesonide down-regulated all of them. These data indicate that inflammation is associated with the down-regulation of tissue glucocorticoid catabolism. However, these changes in the local metabolism of glucocorticoids do not modulate the expression of COX-2, TNF-alpha, and IL-1beta in inflamed tissue.
    Digestive Diseases and Sciences 09/2008; 53(8):2160-7. · 2.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 11beta-Hydroxysteroid dehydrogenase type 1 (11HSD1) is an enzyme that interconverts active 11-hydroxy glucocorticoids (cortisol, corticosterone) and their inactive 11-oxo derivatives (cortisone, 11-dehydrocorticosterone). Although bidirectional, it is considered to operate in vivo as an 11-reductase that regenerates active glucocorticoids and thus amplifies their local activity in mammals. Here we report the cloning, characterization and tissue distribution of chicken 11HSD1 (ch11HSD1). Its cDNA predicts a protein of 300 amino acids that share 51-56% sequence identity with known mammalian 11HSD1 proteins, while in contrast to most mammals, ch11HSD1 contains only one N-linked glycosylation site. Analysis of the tissue distribution pattern by RT-PCR revealed that ch11HSD1 is expressed in a large variety of tissues, with high expression in the liver, kidney and intestine, and weak in the gonads, brain and heart. 11-Reductase activity has been found in the liver, kidney, intestine and gonads with low or almost zero activity in the brain and heart. These results provide evidence for a role of 11HSD1 as a tissue-specific regulator of glucocorticoid action in non-mammalian vertebrates and may serve as a suitable model for further analysis of 11HSD1 evolution in vertebrates.
    The Journal of Steroid Biochemistry and Molecular Biology 07/2008; 111(3-5):217-24. · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NAD(+)-dependent 11beta-hydroxysteroid dehydrogenase (11HSD2) converts glucocorticoids to 11-oxo derivatives and thus decreases their local concentration and prevents them from activating corticosteroid receptors. In this paper we report the partial cloning, characterization and tissue distribution of chicken 11HSD2. A cDNA of 991bp was cloned from kidney mRNA by reverse transcription and polymerase chain reaction. At the amino acid level, the sequence of PCR product had 56-59% homology with mammalian and 46-48% with fish 11HSD2. The consensus sequences of the short-chain dehydrogenase/reductase superfamily such as the catalytic activity motif Tyr-X-X-X-Lys and cosubstrate-binding motif Gly-X-X-X-Gly-X-Gly, were found in the cloned cDNA. Analysis of the tissue expression of chicken 11HSD2 mRNA and NAD(+)-dependent 11beta-oxidase activity showed a similar tissue distribution pattern in the majority of tissues. High levels of expression and activity were found in kidney, small intestine, colon and oviduct; low in ovary and almost zero in brain, liver and testis.
    Steroids 04/2008; 73(3):348-55. · 2.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the gastrointestinal tract is a rich source of melatonin and possesses numerous melatonin-binding sites, the role of melatonin in this tissue has not yet been fully elucidated. In this work we focused on the role of melatonin in the modulation of ion transport in rat distal colon. Whereas melatonin had no effect on colonic secretion or caused only infrequent and small changes in the short circuit current (Isc) due to its solvent ethanol, this mediator significantly modulated the secretion elicited by some secretagogues. Out of the five substances tested (prostaglandin E(2); 5-hydroxytryptamine; bethanechol; histamine; sodium nitroprusside) melatonin inhibited the effect of prostaglandin E(2) (PGE(2)) and sodium nitroprusside (SNP). Melatonin concentration-dependently decreased PGE(2)-evoked Isc and this inhibitory effect was more obvious from the mucosal side. The basal level of cAMP in colonic mucosa was not influenced by melatonin, but this drug prevented a PGE(2)-induced increase in the level of cAMP. The neurotoxin tetrodotoxin blocked the inhibitory effect of melatonin on SNP-induced Isc. Our data suggests that melatonin takes part in the modulation of colonic ion transport. The modulatory effect of melatonin on PGE(2)-induced Isc occurs directly at the level of the epithelium, whereas the effect on SNP-induced Isc is indirect and located in tetrodotoxin-sensitive enteric neurons.
    European Journal of Pharmacology 03/2008; 581(1-2):164-70. · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The gastrointestinal tract exhibits diurnal rhythms in many physiologic functions. These rhythms are driven by food intake but are also preserved during food deprivation, suggesting the presence of endogenous circadian rhythmicity. The aim of the study was to provide insight into the circadian core clock mechanism within the rat colon. Moreover, the potency of a restricted feeding regime to shift the circadian clock in the colon was tested. The question of whether the colonic clock drives circadian expression in NHE3, an electroneutral Na(+)/H(+) exchanger, was also addressed. Daily profiles in expression of clock genes Per1, Per2, Cry1, Bmal1, Clock, and Rev-erbalpha, and the NHE3 transporter were examined by reverse transcriptase-polymerase chain reaction and their mRNA levels, as well as PER1 and BMAL1 protein levels, were localized in the colonic epithelium by in situ hybridization and immunocytochemistry, respectively. Expression of Per1, Per2, Cry1, Bmal1, Clock, Rev-erbalpha, and NHE3, as well as PER1 and BMAL1 protein levels, exhibited circadian rhythmicity in the colon. The rhythms were in phase with those in the liver but phase-delayed relative to the master clock in the suprachiasmatic nucleus. Restricted feeding entrained the clock in the colon, because rhythms in clock genes as well as in NHE3 expression were phase-advanced similarly to the clock in the liver. The rat colon harbors a circadian clock. The colonic clock is likely to drive rhythmic NHE3 expression. Restricted feeding resets the colonic clock similarly to the clock in the liver.
    Gastroenterology 10/2007; 133(4):1240-9. · 12.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 11beta-hydroxysteroid dehydrogenase (11betaHSD) is an enzyme responsible for the interconversion of active 11beta-hydroxysteroids (cortisol) into biologically inactive 11-oxosteroids (cortisone). The isoform 11betaHSD1 operates predominantly as a reductase converting cortisone to cortisol, whereas 11betaHSD2 catalyzes oxidation of cortisol to cortisone. This mechanism of peripheral metabolism of glucocorticoids has been suggested to be involved in increasing the availability of anti- inflammatory glucocorticoids as a response to inflammatory stimuli. The aim of this study therefore was to investigate the impact of inflammatory bowel disease on the expression of colonic 11betaHSD1 and 11betaHSD2. Quantitative real-time RT-PCR was used to assess messenger RNA for 11betaHSD1 and 11betaHSD2 in bioptic samples taken from patients with ulcerative colitis and in healthy controls, and in colon of rats with colitis induced by dextran sulfate sodium (DSS). Rat colonic fragments were used for assessment of local metabolism of glucocorticoids. In both human and rat specimens colitis up-regulated the expression of colonic 11betaHSD1 mRNA and down-regulated 11betaHSD2 mRNA. A similar pattern was observed at the level of local metabolism of corticosterone. Oxidation of corticosterone to 11-dehydrocorticosterone was decreased and reduction of 11-dehydrocorticosterone to corticosterone was increased in colonic tissue of rats with DSS-colitis. Colonic inflammation induces local glucocorticoid activation via 11betaHSD1 and impairs glucocorticoid inactivation via 11betaHSD2. The observed changes indicate a role for local metabolism of glucocorticoids in the control of colonic inflammation.
    Journal of Gastroenterology and Hepatology 08/2007; 22(7):1019-23. · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ligand specificity and activation of steroid receptors depend considerably on the enzymatic activities involved in local pre-receptor synthesis and the metabolism of the steroids. Several enzymes in particular, steroid dehydrogenases have been shown to participate in this process. Here we report the isolation of 20-hydroxysteroid dehydrogenase (ch20HSD) cDNA from chicken intestine and the distribution of ch20HSD mRNA and 20-reductase activity in various avian tissues. Using a reverse transcription PCR and comparison with the known sequences of mammalian 20betaHSDs, we have isolated a new ch20HSD cDNA. This cDNA predicted 276 amino acid residues that shared about 75% homology with mammalian 20betaHSD. Sequences specific to the short-chain dehydrogenase/reductase superfamily (SDR) were found, the Gly-X-X-X-Gly-X-Gly cofactor-binding motif (residues 11-17) and the catalytic activity motif Tyr-X-X-X-Lys (residues 193-197). The cDNA coding for ch20HSD was expressed in Escherichia coli by placing it under isopropylthiogalactoside (IPTG) inducible control. Both the IPTG cells of E. coli and the isolated recombinant protein reduced progesterone to 20-dihydroprogesterone, corticosterone to 20-dihydrocorticosterone and 5alpha-dihydrotestosterone to its 3-ol derivative. The 20-reductase and 3-reductase activities of ch20HSD catalyzed both 3alpha/beta- and 20alpha/20beta-epimers. The mRNA transcripts of ch20HSD were found in the kidney, colon, and testes; weaker expression was also found in the heart, ovaries, oviduct, brain, liver, and ileum. 20-Reductase activity has been proven in tissue slices of kidney, colon, ileum, liver, oviduct, testis, and ovary; whereas the activity was nearly absent in the heart and brain. A similar distribution of 20-reductase activity was found in tissue homogenates measured under V(max) conditions. These results suggest that chicken 20HSD is the latest member of the SDR superfamily to be found, is expressed in many avian tissues and whose precise role remains to be determined.
    Journal of Molecular Endocrinology 01/2007; 37(3):453-62. · 3.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effect of glucocorticoids is controlled at the pre-receptor level by the activity of 11beta-hydroxysteroid dehydrogenase (11HSD). The isoform 11HSD1 is an NADP+ -dependent oxidoreductase, usually reductase, that amplifies the action of glucocorticoids due to reduction of the biologically inactive 11-oxo derivatives cortisone and 11-dehydrocorticosterone to cortisol and corticosterone. The NAD+ -dependent isoform (11HSD2) is an oxidase that restrains the effect of hormones due to 11beta-oxidation of cortisol and corticosterone to their 11-oxo derivatives. Although the immunosuppressive and anti-inflammatory effects of glucocorticoids are well known, the relationship between inflammation and local metabolism of glucocorticoids is not well understood. In this study, we demonstrated that colitis induced by dextran sulfate sodium modulates colonic 11HSD1. Experimentally induced intestinal inflammation stimulated colonic NADP+ -dependent but not NAD+ -dependent 11HSD activity. Colonic 11HSD1 mRNA was increased, whereas 11HSD2 mRNA was not changed. Additional parallel studies revealed a similar pattern of 11HSD1 mRNA induction in mesenteric lymph nodes and intestinal intraepithelial lymphocytes, but not in spleen and peritoneal macrophages. These data suggest that inflammation modulates local metabolism of glucocorticoid and support the notion that pre-receptor regulation of endogenous corticosteroids might play a role in inflammatory processes.
    Journal of Endocrinology 12/2006; 191(2):497-503. · 4.06 Impact Factor

Publication Stats

565 Citations
242.34 Total Impact Points

Institutions

  • 1993–2013
    • Academy of Sciences of the Czech Republic
      • • Institute of Physiology
      • • Oddělení Neurohumorální regulace
      Praha, Praha, Czech Republic
  • 1997–2010
    • Charles University in Prague
      • • II. interní gastroenterologická klinika (Hradec Králové)
      • • Farmaceutická fakulta v Hradci Králové
      • • Interní klinika (2. LF)
      • • Ústav pro histologii a embryologii (1. LF)
      Praha, Hlavni mesto Praha, Czech Republic
  • 1995
    • The Police Academy of the Czech Republic in Prague
      Praha, Praha, Czech Republic