Jae Kwon Jang

Korea Advanced Institute of Science and Technology , Sŏul, Seoul, South Korea

Are you Jae Kwon Jang?

Claim your profile

Publications (3)20.81 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rational organization of porphyrin and C60 on the electrode surface in photovoltaic structures is essential to yield high quantum efficiency. In the present work, individual TiO2 nanoparticles were modified by introducing C60 and porphyrin units on the surface, and then electrophoretically deposited on an ITO/SnO2 electrode. The morphology of the photoactive layer on the electrode was significantly different from that of the layer produced as a result of separate deposition of C60 and porphyrin. The maximum incident photon to current efficiency of the resulting electrode approached 88% at 410 nm, which is the highest value among molecule-based photovoltaic cells reported to date. This indicates that molecular assembly of the C60 and porphyrin units on the individual nanoparticles through strong chemical attachment is a key factor in improving effective electron transfer between the photoactive units and the electrodes.
    Nanotechnology 07/2011; 22(27):275720. DOI:10.1088/0957-4484/22/27/275720 · 3.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new artificial photosynthetic triad array, a [60]fullerene-triosmium cluster/zinc-porphyrin/boron-dipyrrin complex (1, Os(3)C(60)/ZnP/Bodipy), has been prepared by decarbonylation of Os(3)(CO)(8)(CN(CH(2))(3)Si(OEt)(3))(mu(3)-eta(2):eta(2):eta(2)-C(60)) (6) with Me(3)NO/MeCN and subsequent reaction with the isocyanide ligand CNZnP/Bodipy (5) containing zinc porphyrin (ZnP) and boron dipyrrin (Bodipy) moieties. Triad 1 has been characterized by various spectroscopic methods (MS, NMR, IR, UV/Vis, photoluminescence, and transient absorption spectroscopy). The electrochemical properties of 1 in chlorobenzene (CB) have been examined by cyclic voltammetry; the general feature of the cyclic voltammogram of 1 is nine reversible one-electron redox couples, that is, the sum of those of 5 and 6. DFT has been applied to study the molecular and electronic structures of 1. On the basis of fluorescence-lifetime measurements and transient absorption spectroscopic data, 1 undergoes an efficient energy transfer from Bodipy to ZnP and a fast electron transfer from ZnP to C(60); the detailed kinetics involved in both events have been elucidated. The SAM of triad 1 (1/ITO; ITO=indium-tin oxide) has been prepared by immersion of an ITO electrode in a CB solution of 1 and diazabicyclo-octane (2:1 equiv), and characterized by UV/Vis absorption spectroscopy, water contact angle, X-ray photoelectron spectroscopy, and cyclic voltammetry. The photoelectrochemical properties of 1/ITO have been investigated by a standard three-electrode system in the presence of an ascorbic acid sacrificial electron donor. The quantum yield of the photoelectrochemical cell has been estimated to be 29 % based on the number of photons absorbed by the chromophores. Our triad 1 is unique when compared to previously reported photoinduced electron-transfer arrays, in that C(60) is linked by pi bonding with little perturbation of the C(60) electron delocalization.
    Chemistry - A European Journal 05/2010; 16(19):5586-99. DOI:10.1002/chem.201000215 · 5.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: (Figure Presented) Hollow nan': Hollow face-centered cubic (fcc) Co nanoparallelepipeds were prepared by thermolysis of solid fcc CoO nanoparallelepipeds in oleylamine (see TEM image). The solid fcc CoO nanoparallelepipeds are reduced by the oleylamine surfactant to form hollow fcc Co nanoparallelepipeds. Voids and fcc Co are generated on the surface of the solid fcc CoO nanoparallelepipeds by the removal of oxide as carbon monoxide.
    Angewandte Chemie International Edition 11/2008; 47(49):9504-8. DOI:10.1002/anie.200803048 · 11.26 Impact Factor