Hernán A Navarro

RTI International, Durham, North Carolina, United States

Are you Hernán A Navarro?

Claim your profile

Publications (101)400.19 Total impact

  • Alyssa M Hartung · Hernan A Navarro · David F Wiemer · Jeffrey D Neighbors ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies of directed ortho metalation reactions on an aromatic substrate with multiple potential directing groups have identified conditions that favor either of two regioisomers. One of these regioisomers has been converted to an analogue of the stilbene pawhuskin A, and been shown to have high selectivity as an antagonist of the delta opioid receptor. Docking studies have suggested that this compound can adopt a conformation similar to naltrindole, a known delta antagonist.
    Bioorganic & medicinal chemistry letters 11/2015; 25(23). DOI:10.1016/j.bmcl.2015.10.059 · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nociceptin/orphanin FQ opioid peptide (NOP) receptor is a widely expressed GPCR involved in the modulation of pain, anxiety, and motor behaviors. Dissecting the functional properties of this receptor is limited by the lack of systemically active ligands that are brain permeant. The small molecule NOP receptor- selective, full agonist 8-(1S,3αS)-(2,3,3a,4,5,6-hexahydro-1H-phenalin-1-yl)-1-phenyl-1,3,8-triazaspiro[4,5]decan-4-one (Ro 64-6198) hydrochloride is an orally active ligand, but its difficult and cost-prohibitive synthesis limits its widespread use and availability for animal studies. Here, we detail a more efficient and convenient method of synthesis, and use both in vitro and in vivo pharmacological assays to fully characterize this ligand. Specifically, we characterize the pharmacodynamics of Ro 64-6198 in cAMP and G-protein coupling in vitro and examine, for the first time, the effects of nociceptin/orphanin FQ and Ro 64-6198 in arrestin recruitment assays. Further, we examine the effects of Ro 64-6198 on analgesia, anxiety, and locomotor responses in vivo. This new synthesis and pharmacological characterization provide additional insights into the useful, systemically active, NOP receptor agonist Ro 64-6198.
    ACS Chemical Neuroscience 09/2015; DOI:10.1021/acschemneuro.5b00208 · 4.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The design and discovery of JDTic as a potent and selective kappa opioid receptor antagonist used the N-substituted trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine pharmacophore as the lead structure. In order to determine if the 3-methyl or 4-methyl groups were necessary in JDTic and JDTic analogs for antagonistic activity, compounds 4a-c, and 4d-f which have either the 3-methyl or both the 3- and 4-methyl groups removed, respectively, from JDTic and analogs were synthesized and evaluated for their in vitro opioid receptor antagonist activities using a [(35)S]GTPγS binding assay. Other ADME properties were also assessed for selected compounds. These studies demonstrated that neither the 3-methyl or 3,4-dimethyl groups present in JDTic and analogs are required to produce potent and selective κ opioid receptor antagonists. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Bioorganic & medicinal chemistry 08/2015; 23(19). DOI:10.1016/j.bmc.2015.08.025 · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the last several years we have synthesized and studied the in vitro and in vivo nAChR pharmacological properties of epibatidine (4) analogs. In this study we report the synthesis, nAChR in vitro and in vivo pharmacological properties of 3'-(substituted pyridinyl)-deschloroepibatidine analogs (5a-e and 6a-e). All of the analogs had high binding affinity for α4β2(∗)-nAChRs. Several of the analogs were potent antagonists of α4β2-nAChRs in in vitro efficacy tests and were potent antagonists of nicotine-induced antinociception in the mouse tail-flick test. Compound 6b had a Ki=0.13nM in the binding assay, 25- and 46-fold selectivity for the α4β2(∗)-nAChR relative to the α3β4- and α7-nAChR, respectively, in the in vitro efficacy test and an AD50=0.13μg/kg in the tail-flick test. Combined with favorable calculated physiochemical properties compared to varenicline, our findings suggest that 6b should be considered for development as a potential pharmacotherapy for treating nicotine addiction and other CNS disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Bioorganic & medicinal chemistry 07/2015; 23(17). DOI:10.1016/j.bmc.2015.07.021 · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Comprehensive studies that consolidate selective ligands, quantitative comparisons of G-protein versus arrestin2/3 coupling, together with structure-activity relationship models (SAR) for G-protein coupled receptor (GPCR) systems are less commonly employed. Here we examine biased signaling at the nociceptin/orphanin FQ opioid receptor (NOPR), the most recently identified member of the opioid receptor family. Using real-time, live-cell assays we've identified the signaling profiles of several NOPR-selective ligands in upstream GPCR signaling (G-protein and arrestin pathways), in order to determine their relative transduction coefficients and signaling bias. Complementing this analysis, we designed novel ligands based on the NOPR antagonist J-113,397 to explore structure activity relationships. Our study shows that NOPR is capable of biased signaling, and further the NOPR selective ligands MCOPPB and NNC 63-0532 are G-protein biased agonists. Additionally, minor structural modification of J-113,397 can dramatically shift signaling from antagonist to partial agonist activity. We explore these findings with in silico modeling of binding poses. This work is the first to demonstrate functional selectivity and identification of biased ligands at the nociceptin opioid receptor. The American Society for Pharmacology and Experimental Therapeutics.
    Molecular pharmacology 07/2015; 88(3). DOI:10.1124/mol.115.099150 · 4.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pyrido[3,4]homotropane[PHT], a conformationally rigid, high affinity analog of nicotine. (+)-PHT was previously shown to be 266 times more potent than (-)-PHT for inhibition of [3H]epibatidine binding to nAChRs, but had no antinociceptive activity in mouse tail-flick or hot-plate tests and was not a nicotinic antagonist even when administered intrathecally. (-)-PHT had no agonist activity, but was a potent antagonist. Here, electrophysiological studies with rat nAChRs show (+)-PHT to be a low efficacy partial agonist selective for α4β2-nAChRs, relative to α3β4-nAChRs (15-fold) and α7-nAChRs (45-fold). (-)-PHT was an antagonist with selectivity for α3β4, relative to α4β2- (3-fold) and α7- (11-fold) nAChRs. In [3H] DA release studies in mice, (+)-PHT was 10-fold more potent than (-)-PHT at α4β2*-nAChRs and 30-fold more potent at α6β2*-nAChRs. Studies using α5KO mice suggested that much of the activity at α4β2*-nAChRs is mediated by the α4β2α5-nAChR subtype. In Conditioned Place Preference studies, (-)-PHT was more potent than (+)-PHT in blocking nicotine reward. Off-target screens showed (+)- and (-)-PHT to be highly selective for nAChRs. The high potency, full agonism of (+)- and ( )-PHT at α6*-nAChR contrasts with the partial agonism observed for α4*-nAChR, making these ligands intriguing probes for learning more about the pharmacophores for various nAChRs.
    ACS Chemical Neuroscience 04/2015; 6(6). DOI:10.1021/acschemneuro.5b00077 · 4.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: JDTic analogues 4-15 which have the hydroxyl groups replaced with other groups were synthesized and their in vitro efficacy at the mu, delta, and kappa opioid receptors determined and compared to JDTic using [S-35]GTP gamma S assays. Compounds 4, 5, 6, 13, 14, and 15 had K-e = 0.024, 0.01, 0.039, 0.02, 0.11, and 0.041 nM compared to the K-e = 0.02 nM for JDTic at the kappa receptor and were highly selective for the kappa receptor relative to the mu and delta opioid receptors. Unexpectedly, replacement of the 3-hydroxyl substituent of the 4-(3-hydroxyphenyl) group of JDTic with a H, F, or Cl substituent leads to potent and selective KOR antagonists. In vitro studies to determine various ADME properties combined with calculated TPSA, clogP, and logBB values suggests that the potent and selective kappa opioid receptors 4, 5, 13, and 14 deserve consideration for further development toward potential drugs for CNS disorders.
    Journal of Medicinal Chemistry 08/2014; 57(17). DOI:10.1021/jm5008177 · 5.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The success rate for central nervous system (CNS) drug candidates in the clinic is relatively low compared to the industry average across other therapeutic areas. Penetration through the blood-brain barrier (BBB) to reach the therapeutic target is a major obstacle in development. The rapid CNS penetration of salvinorin A has suggested that the neoclerodane nucleus offers an excellent scaffold for developing antiproliferative compounds that enter the CNS. The Liebeskind-Srogl reaction was used as the main carbon-carbon bond-forming step toward the synthesis of quinone-containing salvinorin A analogues. Quinone-containing salvinorin A analogues were shown to have antiproliferative activity against the MCF7 breast cancer cell line, but show no significant activity at the κ-opioid receptors. In an in vitro model of BBB penetration, quinone-containing salvinorin A analogues were shown to passively diffuse across the cell monolayer. The analogues, however, are substrates of P-glycoprotein, and thus further modification of the molecules is needed to reduce the affinity for the efflux transporter.
    Journal of Natural Products 07/2014; 77(8). DOI:10.1021/np5002048 · 3.80 Impact Factor
  • Shashikanth Ponnala · Nirav Kapadia · Hernán A. Navarro · Wayne W. Harding ·
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of ring A modified analogs of nantenine as well as structural variants in ring C were synthesized and evaluated for antagonist activity at 5-HT2A and α1A receptors. Halogenation improves 5-HT2A antagonist potency in molecules containing a C1 methoxyl/C2 methoxyl or C1 methoxyl/C2 hydroxyl moiety. Bromination or iodination (but not chlorination) with the latter moiety also significantly increased α1A antagonist potency. Homologation or contraction of ring C adversely affected antagonist activity at both receptors, implying that a six-membered ring C motif is beneficial for high antagonist potency at both receptors. Molecular docking studies suggest that the improved antagonist activity (by virtue of improved affinity) of C3 halogenated aporphines in this study, is attributable to favorable interactions with the C3 halogen and F339 and/or F340.This article is protected by copyright. All rights reserved.
    Chemical Biology &amp Drug Design 04/2014; 84(5). DOI:10.1111/cbdd.12345 · 2.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N-substituted trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidines (2a-b) are opioid receptor antagonists where the antagonist properties are not due to the type of N-substituent. In order to gain a better understanding of the contribution that the 3- and 4-methyl groups make to the pure antagonist properties of 2a-b, we synthesized analogues of 2a-b which lacked the 4-methyl (5a-b), 3-methyl (6a-b) and both the 3- and 4-methyl group (7a-b) and compared their opioid receptor properties. We found that (1) all N-methyl and N-phenylpropyl substituted compounds were non-selective opioid antagonists (2) all N-phenylpropyl analogues were more potent than their N-methyl counterparts and (3) compounds 2a-b which have both a 3- and 4-methyl substituent, were more potent antagonists than analogs 5a-b, 6a-b and 7a-b. We also found that the removal of 3-methyl substituent of N-methyl and N-phenylpropyl 3-methyl-4-(3-hydroxyphenyl)piperazines (8a-b) gives (4a-b) which are opioid antagonists.
    Journal of Medicinal Chemistry 03/2014; 57(7). DOI:10.1021/jm500184j · 5.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A set of aporphine analogs related to nantenine was evaluated for antagonist activity at 5-HT2A and α1A adrenergic receptors. With regards to 5-HT2A receptor antagonism, a C2 allyl group is detrimental to activity. The chiral center of nantenine is not important for 5-HT2A antagonist activity, however the N6 nitrogen atom is a critical feature for 5-HT2A antagonism. Compound 12b was the most potent 5-HT2A aporphine antagonist identified in this study and has similar potency to previously identified aporphine antagonists 2 and 3. The ring A and N6 modifications examined were detrimental to α1A antagonism. A slight eutomeric preference for the R enantiomer of nantenine was observed in relation to α1A antagonism.
    Bioorganic & medicinal chemistry letters 03/2014; 24(7). DOI:10.1016/j.bmcl.2014.02.066 · 2.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bupropion, introduced as an antidepressant in the 1980s, is also effective as a smoking cessation aid and is beneficial in the treatment of methamphetamine addiction, cocaine dependence, addictive behaviors such as pathological gambling, and attention deficit hyperactivity disorder. (2S,3S)-hydroxybupropion is an active metabolite of bupropion produced in humans that contributes to antidepressant and smoking cessation efficacy and perhaps benefits in other CNS disorders. Mechanisms underlying its antidepressant and smoking abstinence remain elusive. However, it seems likely that efficacy is due to a combination of the effects of bupropion and/or its active metabolite (2S,3S)-hydroxybupropion involving the inhibition of reuptake of dopamine (DA) and NE in reward centers of the brain and the noncompetitive antagonism of α4β2- and α3β4*-nAChRs. These combined effects of bupropion and its active metabolite may be responsible for its ability to decrease nicotine reward and withdrawal. Studies directed toward development of a bupropion analog for treatment of cocaine addiction led to compounds, typified by 2-(N-cyclopropylamino)-3'-chloropropiophenone (RTI-6037-39), thought to act as indirect DA agonists. In addition, (2S,3S)-hydroxybupropion analogs were developed, which had varying degrees of DA and NE uptake inhibition and antagonism of nAChRs. These compounds will be valuable tools for animal behavioral studies and as clinical candidates. Here, we review the (1) early studies leading to the development of bupropion, (2) bupropion metabolism and the identification of (2S,3R)-hydroxybupropion as an active metabolite, (3) mechanisms of bupropion and metabolite action, (4) effects in animal behavioral studies, (5) results of clinical studies, and (6) development of bupropion analogs as potential pharmacotherapies for treating nicotine and cocaine addiction.
    Advances in pharmacology (San Diego, Calif.) 02/2014; 69:177-216. DOI:10.1016/B978-0-12-420118-7.00005-6
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The natural stilbene pawhuskin A has been shown to function as an opioid receptor antagonist, with preferential binding to the κ receptor. This finding encouraged assembly of a set of analogues to probe the importance of key structural features. Assays on these compounds determined that one (compound 29) shows potent opioid receptor binding activity and significantly improved selectivity for the κ receptor. These studies begin to illuminate the structural features of these non-nitrogenous opioid receptor antagonists that are required for activity.
    Journal of Natural Products 01/2014; 77(2). DOI:10.1021/np4009046 · 3.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 2'-Fluoro-3-(substituted pyridine)epibatidine analogues 7a-e and 8a-e were synthesized and their in vitro and in vivo nAChR properties determined. 2'-Fluoro-3'-(4"-pyridinyl)deschloroepibatidine (7a) and 2'-fluoro-3'-(3"-pyridinyl)deschloroepibatidine (8a) were synthesized as bioisosteres of the 4'-nitrophenyl lead compounds 5a and 5g. Comparison of the in vitro nAChR properties of 7a and 8a to those of 5a and 5g showed that 7a and 8a had in vitro nAChR properties similar to those of 5a and 5g, but both were more selective for the α4β2-nAChR relative to the α3β4- and α7-nAChRs than 5a and 5g. The in vivo nAChR properties in mice of 7a were similar to those of 5a. In contrast, 8a was an agonist in all four mouse acute tests, whereas 5g was active only in a spontaneous activity test. In addition, 5g was a nicotine antagonist in both the tail-flick and hot-plate tests, whereas as 8a was only an antagonist in the tail-flick test.
    Journal of Medicinal Chemistry 01/2014; 57(3). DOI:10.1021/jm401602p · 5.45 Impact Factor
  • Andrew P Riley · Victor W Day · Hernán A Navarro · Thomas E Prisinzano ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Transformations that selectively modify the furan ring present in a variety of naturals products would be useful in the synthesis of biological probes but remain largely underexplored. The neoclerodane diterpene salvinorin A, isolated from Salvia divinorum, is an example of a furan-containing natural product. Following selective bromination of salvinorin A, Suzuki-Miyaura and Sonogashira couplings were accomplished in moderate to good yields without hydrolyzing the labile C-2 acetate or altering the stereochemistry of the epimerizable centers.
    Organic Letters 11/2013; 15(23). DOI:10.1021/ol4027528 · 6.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In previous studies we reported that addition of 7α-acylamino groups to N-phenylpropyl-4β-methyl-5-(3-hydroxyphenyl)morphan (4) led to compounds that were pure opioid receptor antagonists. In contrast to these findings we report in this study that addition of a 7α-amino (5a), 7α-alkylamino (5b-e), or 7α-dialkylamino 5f-h) group to 4 leads to opioid receptor ligands with varying degrees of agonist/antagonist activity. The 7α-amino and 7α-methylamino analogues were full agonists at the μ and δ receptors and antagonists at the κ receptor. The 7α-cyclopropylmethylamino analogue 5h was a full agonist at the μ receptor with weaker agonist activity at the δ and κ receptors. Whereas the addition of a 7α-acylamino group to the pure non-selective opioid receptor antagonist N-phenylpropyl-4β-methyl-5-(3-hydroxyphenyl)morphan (4) led to κ selective pure opioid receptor antagonist, the addition of a 7α-amino, 7α-alkylamino or 7α-dialkylamino group to 4 leads to opioid ligands that are largely μ or δ agonist with mixed agonist/antagonist properties.
    Journal of Medicinal Chemistry 10/2013; 56(21). DOI:10.1021/jm401250s · 5.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is continuing interest in the discovery and development of new κ opioid receptor antagonists. We recently reported that N-substituted 3-methyl-4-(3-hydroxyphenyl)piperazines were a new class of opioid receptor antagonists. In this study we report the syntheses of two piperazine JDTic-like analogues. Evaluation of the two compounds in an in vitro [(35)S]GTPγS binding assay showed that neither compound showed the high potency and κ opioid receptor selectivity of JDTic. A library of compounds using the core scaffold 21 was synthesized and tested for their ability to inhibit [(35)S]GTPγS binding stimulated by the selective κ opioid agonist U69,593. These studies led to N-[(1S)-1-{[(3S)-4-(3-hydroxyphenyl)-3-methylpiperazin-1-yl]methyl}-2-methylpropyl]-4-phenoxybenzamide (11a), a compound that showed good κ opioid receptor antagonist properties. An SAR study based on 11a provided 28 novel analogues. Evaluation of these 28 compounds in the [(35)S]GTPγS binding assay showed that several of the analogues were potent and selective κ opioid receptor antagonists.
    Journal of Medicinal Chemistry 05/2013; 56(11). DOI:10.1021/jm400275h · 5.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herein, we report the synthesis and nicotinic acetylcholine receptor (nAChR) in vitro and in vivo pharmacological properties of 2'-fluoro-3'-(substituted phenyl)deschloroepibatidines 5b-g, analogues of 3'-(4-nitrophenyl) compound 5a. All compounds had high affinity for α4β2-nAChR and low affinity for α7-nAChR. Initial electrophysiological studies showed that all analogues were antagonists at α4β2-, α3β4-, and α7-nAChRs. The 4-carbamoylphenyl analogue 5g was highly selective for α4β2-nAChR over α3β4- and α7-nAChRs. All the analogues were antagonists of nicotine-induced antinociception in the tail-flick test. Molecular modeling docking studies using the agonist-bound form of the X-ray crystal structure of the acetylcholine binding protein suggested several different binding modes for epibatidine, varenicline, and 5a-g. In particular, a unique binding mode for 5g was suggested by these docking simulations. The high binding affinity, in vitro efficacy, and selectivity of 5g for α4β2-nAChR combined with its nAChR functional antagonist properties suggest that 5g will be a valuable pharmacological tool for studying the nAChR and may have potential as a pharmacotherapy for addiction and other central nervous system disorders.
    Journal of Medicinal Chemistry 06/2012; 55(14):6512-22. DOI:10.1021/jm300575y · 5.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In an effort to discover potent and selective metabotropic glutamate receptor subtype 5 (mGluR5) antagonists, 15 tetrahydropyrimidinone analogues of 1-(3-chlorophenyl)-3-(1-methyl-4-oxo-4,5-dihydro-1H-imidazol-2-yl)-urea (fenobam) were synthesized. These compounds were evaluated for antagonism of glutamate-mediated mobilization of internal calcium in an mGluR5 in vitro efficacy assay. The IC(50) value for 1-(3-chlorophenyl)-3-(1-methyl-4-oxo-1,4,5,6-tetrahydropyridine)urea (4g) was essentially identical to that of fenobam.
    ACS Medicinal Chemistry Letters 12/2011; 2(12):882-884. DOI:10.1021/ml200162f · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of C1, C2, C3 and N6 analogs of nantenine (2) was synthesized and evaluated in 5-HT(2A) and α(1A) receptor functional assays. Alkyl substitution of the C1 and N6 methyl groups of nantenine provided selective 5-HT(2A) and α(1A) antagonists, respectively. The C2 alkyloxy analogs studied were generally selective for α(1A) versus 5-HT(2A). The C3 bromo analog 15 is one of the most potent aporphinoid 5-HT(2A) antagonists known presently.
    Bioorganic & medicinal chemistry 08/2011; 19(19):5861-8. DOI:10.1016/j.bmc.2011.08.019 · 2.79 Impact Factor

Publication Stats

2k Citations
400.19 Total Impact Points


  • 2008-2015
    • RTI International
      Durham, North Carolina, United States
  • 1997-2015
    • Research Triangle Park Laboratories, Inc.
      Raleigh, North Carolina, United States
    • Brookhaven National Laboratory
      New York, New York, United States
  • 2013
    • University of Kansas
      • Department of Medicinal Chemistry
      Lawrence, Kansas, United States
  • 2001-2010
    • Virginia Commonwealth University
      • Department of Pharmacology and Toxicology
      Richmond, Virginia, United States
  • 2007
    • Emory University
      Atlanta, Georgia, United States
    • University of Iowa
      • College of Pharmacy
      Iowa City, Iowa, United States
  • 2004
    • Duke University
      Durham, North Carolina, United States
  • 1999-2002
    • University of Illinois at Chicago
      • Department of Medicinal Chemistry and Pharmacognosy
      Chicago, Illinois, United States