Are you Geertruida M Veldman?

Claim your profile

Publications (3)10.35 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin 22 (IL-22) is a cytokine induced during both innate and adaptive immune responses. It can effect an acute phase response, implicating a role for IL-22 in mechanisms of inflammation. IL-22 requires the presence of the IL-22 receptor (IL-22R) and IL-10 receptor 2 (IL-10R2) chains, two members of the class II cytokine receptor family (CRF2), to effect signal transduction within a cell. We studied the interaction between human IL-22 and the extracellular domains (ECD) of its receptor chains in an enzyme-linked immunoabsorbant assay (ELISA)-based format, using biotinylated IL-22 (bio-IL-22) and receptor-fusions containing the ECD of a receptor fused to the Fc of hIgG1 (IL-22R-Fc and IL-10R2-Fc). IL-22 has measurable affinity for IL-22R-Fc homodimer and undetectable affinity for IL-10R2. IL-22 has substantially greater affinity for IL-22R/IL-10R2-Fc heterodimers. Further analyses involving sequential additions of receptor homodimers and cytokine indicates that the IL-10R2(ECD) binds to a surface created by the interaction between IL-22 and the IL-22R(ECD), and thereby further stabilizes the association of IL-22 within this cytokine-receptor-Fc complex. Both a neutralizing rat monoclonal antibody, specific for human IL-22, and human IL-22BP-Fc, an Fc-fusion of the secreted IL-22 binding-protein and proposed natural antagonist for IL-22, bind to similar cytokine epitopes that may overlap the binding site for IL-22R(ECD). Another rat monoclonal antibody, specific for IL-22, binds to an epitope that may overlap a separate binding site for IL-10R2(ECD). We propose, based on this data, a temporal model for the development of a functional IL-22 cytokine-receptor complex.
    International Immunopharmacology 06/2004; 4(5):693-708. DOI:10.1016/j.intimp.2004.01.010 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A human therapeutic that specifically modulates skeletal muscle growth would potentially provide a benefit for a variety of conditions including sarcopenia, cachexia, and muscular dystrophy. Myostatin, a member of the TGF-beta family of growth factors, is a known negative regulator of muscle mass, as mice lacking the myostatin gene have increased muscle mass. Thus, an inhibitor of myostatin may be useful therapeutically as an anabolic agent for muscle. However, since myostatin is expressed in both developing and adult muscles, it is not clear whether it regulates muscle mass during development or in adults. In order to test the hypothesis that myostatin regulates muscle mass in adults, we generated an inhibitory antibody to myostatin and administered it to adult mice. Here we show that mice treated pharmacologically with an antibody to myostatin have increased skeletal muscle mass and increased grip strength. These data show for the first time that myostatin acts postnatally as a negative regulator of skeletal muscle growth and suggest that myostatin inhibitors could provide a therapeutic benefit in diseases for which muscle mass is limiting.
    Biochemical and Biophysical Research Communications 02/2003; 300(4):965-71. DOI:10.1016/S0006-291X(02)02953-4 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The program death 1 (PD-1) receptor and its ligands, PD-1 ligand (PD-L)1 and PD-L2, define a novel regulatory pathway with potential inhibitory effects on T, B, and monocyte responses. In the present study, we show that human CD4(+) T cells express PD-1, PD-L1, and PD-L2 upon activation, and Abs to the receptor can be agonists or antagonists of the pathway. Under optimal conditions of stimulation, ICOS but not CD28 costimulation can be prevented by PD-1 engagement. IL-2 levels induced by costimulation are critical in determining the outcome of the PD-1 engagement. Thus, low to marginal IL-2 levels produced upon ICOS costimulation account for the greater sensitivity of this pathway to PD-1-mediated inhibition. Interestingly, exogenous IL-2, IL-7, and IL-15 but not IL-4 and IL-21 can rescue PD-1 inhibition, suggesting that among these cytokines only those that activate STAT5 can rescue PD-1 inhibition. As STAT5 has been implicated in the maintenance of IL-2Ralpha expression, these results suggest that IL-7 and IL-15 restore proliferation under conditions of PD-1 engagement by enhancing high-affinity IL-2R expression and hence, IL-2 responsiveness.
    The Journal of Immunology 02/2003; 170(2):711-8. DOI:10.4049/jimmunol.170.2.711 · 5.36 Impact Factor