Are you Gary A Zets?

Claim your profile

Publications (6)1.65 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Development of new multisensory Soldier display systems requires context-driven evaluation of technology by expert users to assure generalizability to operations. The capture of Soldier performance demands is particularly challenging in this regard, as many factors converge to impact performance in actual usage. In this paper, we describe new capabilities for tactile communications that include an authoring system, use of android-driven displays for control and map-based information, and engineering tactors with differing salient characteristics. This allows development of a dual-tactor display that affords a larger variety of tactile patterns for communications, or TActions. These innovations are integrated in a prototype system. We used the system to present navigational signals to combat-experienced soldiers to guide development of tactile principles and the system itself. Feedback was positive for the concept, operational relevance, and for ease of interpretation.
    Proceedings of the 15th international conference on Human Interface and the Management of Information: information and interaction for health, safety, mobility and complex environments - Volume Part II; 07/2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An immediate need exists for a portable diagnostic device for the assessment of cortical function, and diagnosis of mTBI. This paper presents initial results using a vibrotactile acuity test for the objective and quantitative diagnosis of acute mTBI suspects. mTBI is hypothesized to involve derangement or damage to the underlying cortical network. In particular, fundamental building blocks of the cortex are changed in such a way as to limit the functional connectivity within and between cortical columns. Our approach is based on sensory illusions that are configured as a test of neural connectivity. Pilot clinical test data showed differences between a small healthy normal group and a concussion group using a sports concussion model.
    Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 08/2011; 2011:2041-4.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The sense of touch is an effective, but underutilized, human communication channel. In this paper we describe our research efforts towards optimizing a minimal tactile array for personal navigation and route guidance. There are several aspects to this problem. From an information transfer viewpoint, the question of tactor array size, dimension, location and display symbology requires careful consideration. Effective tactile display symbology involves providing information in an intuitive manner without adding to the cognitive loading of the user. Tactile information may be presented through spatial, temporal and signal variables. We have recently developed new wearable tactors that offer wide sensory capabilities to provide different “feeling” stimuli. These actuators are non-linear in that the salient characteristics for perception are linked to a complex drive stimulus. We have therefore developed a tactor activation design approach termed “TActions” (Tactile Actions) where patterns or sequence of individual tactile stimuli, each of which has its own characteristics and properties, are used to create tactile display symbology that a user can naturally associate with a particular function. These components provide display design frame work which we have used to demonstrate orientation and navigation.
    Human-Computer Interaction. Towards Mobile and Intelligent Interaction Environments - 14th International Conference, HCI International 2011, Orlando, FL, USA, July 9-14, 2011, Proceedings, Part III; 01/2011
  • Source
    Tactile Displays for Orientation, Navigation and Communication in Air, Sea and Land Environments. 01/2008;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The body's sense of touch is potentially a versatile channel for the conveyance of directional, spatial, command, and timing information. Most practical implementations of vibrotactile systems require compact, light-weight actuators that can be mounted against the body. Eccentric mass motors are widely used for this application, yet their output is limited and the effects of loading on the transducers due to the skin and mounting arrangement have been largely ignored. Conventional linear actuators are well suited as vibrotactile transducers and can provide high output, but are typically limited to laboratory research due to their large size and cost. The effect of loading on various practical vibrotactile transducers is investigated using a skin impedance phantom and measuring the transducer displacement with respect to additional mass loading. Depending on the transducer design, loading can dramatically reduce the vibratory displacement and, in the case of eccentric mass motors, also increase the operating frequency. In contrast, a new linear actuator design can be designed to be almost independent of skin loading, by considering the mechanical impedance of the load and optimizing the transducer contact area.
    The Journal of the Acoustical Society of America 06/2007; 121(5 Pt1):2970-7. · 1.65 Impact Factor
  • Source