Franck Court

French National Centre for Scientific Research, Lutetia Parisorum, Île-de-France, France

Are you Franck Court?

Claim your profile

Publications (17)109.05 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomic imprinting is the epigenetic marking of genes that results in parent-of-origin monoallelic expression. Most imprinted domains are associated with differentially DNA methylated regions (DMRs) that originate in the gametes, and are maintained in somatic tissues after fertilization. This allelic methylation profile is associated with a plethora of histone tail modifications that orchestrates higher order chromatin interactions. The mouse chromosome 15 imprinted cluster contains multiple brain-specific maternally expressed transcripts including Ago2, Chrac1, Trappc9 and Kcnk9 and a paternally expressed gene, Peg13. The promoter of Peg13 is methylated on the maternal allele and is the sole DMR within the locus. To determine the extent of imprinting within the human orthologous region on chromosome 8q24, a region associated with autosomal recessive intellectual disability, Birk-Barel mental retardation and dysmorphism syndrome, we have undertaken a systematic analysis of allelic expression and DNA methylation of genes mapping within an approximately 2 Mb region around TRAPPC9. Utilizing allele-specific RT-PCR, bisulphite sequencing, chromatin immunoprecipitation and chromosome conformation capture (3C) we show the reciprocal expression of the novel, paternally expressed, PEG13 non-coding RNA and maternally expressed KCNK9 genes in brain, and the biallelic expression of flanking transcripts in a range of tissues. We identify a tandem-repeat region overlapping the PEG13 transcript that is methylated on the maternal allele, which binds CTCF-cohesin in chromatin immunoprecipitation experiments and possesses enhancer-blocker activity. Using 3C, we identify mutually exclusive approximately 58 and 500 kb chromatin loops in adult frontal cortex between a novel brain-specific enhancer, marked by H3K4me1 and H3K27ac, with the KCNK9 and PEG13 promoters which we propose regulates brain-specific expression. We have characterised the molecular mechanism responsible for reciprocal allelic expression of the PEG13 and KCNK9 transcripts. Therefore, our observations may have important implications for identifying the cause of intellectual disabilities associated with the 8q24 locus.
    Epigenetics & Chromatin 03/2014; 7(1):5. · 4.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cancer is as much an epigenetic disease as a genetic one; however, the interplay between these two processes is unclear. Recently, it has been shown that a large proportion of DNA methylation variability can be explained by allele-specific methylation (ASM), either at classical imprinted loci or those regulated by underlying genetic variants. During a recent screen for imprinted differentially methylated regions, we identified the genomic interval overlapping the non-coding nc886 RNA (previously known as vtRNA2-1) as an atypical ASM that shows variable levels of methylation, predominantly on the maternal allele in many tissues. Here we show that the nc886 interval is the first example of a polymorphic imprinted DMR in humans. Further analysis of the region suggests that the interval subjected to ASM is approximately 2 kb in size and somatically acquired. An in depth analysis of this region in primary cancer samples with matching normal adjacent tissue from the Cancer Genome Atlas revealed that aberrant methylation in bladder, breast, colon and lung tumors occurred in approximately 27% of cases. Hypermethylation occurred more frequently than hypomethylation. Using additional normal-tumor paired samples we show that on rare occasions the aberrant methylation profile is due to loss-of-heterozygosity. This work therefore suggests that the nc886 locus is subject to variable allelic methylation that undergoes cancer-associated epigenetic changes in solid tumors.
    Epigenetics: official journal of the DNA Methylation Society 03/2014; 9(5). · 4.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic chromosomes are partitioned into topologically associating domains (TADs) that are demarcated by distinct insulator-binding proteins (IBPs) in Drosophila. Whether IBPs regulate specific long-range contacts and how this may impact gene expression remains unclear. Here we identify "indirect peaks" of multiple IBPs that represent their distant sites of interactions through long-range contacts. Indirect peaks depend on protein-protein interactions among multiple IBPs and their common cofactors, including CP190, as confirmed by high-resolution analyses of long-range contacts. Mutant IBPs unable to interact with CP190 impair long-range contacts as well as the expression of hundreds of distant genes that are specifically flanked by indirect peaks. Regulation of distant genes strongly correlates with RNAPII pausing, highlighting how this key transcriptional stage may trap insulator-based long-range interactions. Our data illustrate how indirect peaks may decipher gene regulatory networks through specific long-range interactions.
    Molecular cell 01/2014; · 14.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wilms tumor 1 (WT1) is over-expressed in numerous cancers with respect to normal cells, and has either a tumor suppressor or oncogenic role depending on cellular context. This gene is associated with numerous alternatively spliced transcripts, which initiate from two different unique first exons within the WT1 and the alternative (A)WT1 promoter intervals. Within the hematological system, WT1 expression is restricted to CD34+/CD38- cells and is undetectable after differentiation. Detectable expression of this gene is an excellent marker for minimal residual disease in acute myeloid leukemia (AML), but the underlying epigenetic alterations are unknown. To determine the changes in the underlying epigenetic landscape responsible for this expression, we characterized expression, DNA methylation and histone modification profiles in 28 hematological cancer cell lines and confirmed the methylation signature in 356 cytogenetically well-characterized primary hematological malignancies. Despite high expression of WT1 and AWT1 transcripts in AML-derived cell lines, we observe robust hypermethylation of the AWT1 promoter and an epigenetic switch from a permissive to repressive chromatin structure between normal cells and AML cell lines. Subsequent methylation analysis in our primary leukemia and lymphoma cohort revealed that the epigenetic signature identified in cell lines is specific to myeloid-lineage malignancies, irrespective of underlying mutational status or translocation. In addition to being a highly specific marker for AML diagnosis (positive predictive value 100%; sensitivity 86.1%; negative predictive value 89.4%), we show that AWT1 hypermethylation also discriminates patients that relapse from those achieving complete remission after hematopoietic stem cell transplantation, with similar efficiency to WT1 expression profiling. We describe a methylation signature of the AWT1 promoter CpG island that is a promising marker for classifying myeloid-derived leukemias. In addition AWT1 hypermethylation is ideally suited to monitor the recurrence of disease during remission in patients undergoing allogeneic stem cell transfer.
    Journal of Hematology & Oncology 01/2014; 7(1):4. · 4.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Differential methylation between the two alleles of a gene has been observed at imprinted regions, where the methylation of one allele occurs on a parent-of-origin basis, the inactive X-chromosome in females, and at those loci whose methylation is driven by genetic variants. We have extensively characterized imprinted methylation in a substantial range of normal human tissues, reciprocal genome-wide uniparental disomies and hydatidiform moles, using a combination of whole genome bisulphite sequencing and high-density methylation microarrays. This approach allowed us to define methylation profiles at known imprinted domains at base-pair resolution, as well as identifying 21 novel loci harbouring parent-of-origin methylation, 15 of which are restricted to the placenta. We observe that the extent of imprinted differentially methylated regions (DMRs) is extremely similar between tissues, with the exception of the placenta. This extra-embryonic tissue often adopts a different methylation profile compared to somatic tissues. Further we profiled all imprinted DMRs in sperm and embryonic stem cells derived from parthenogenetically-activated oocytes, individual blastomeres and blastocysts to identifying primary DMRs and reveal the extent of reprograming during pre-implantation development. Intriguingly, we find that in contrast to ubiquitous imprints, the majority of placenta-specific imprinted DMRs are unmethylated in sperm and all human embryonic stem cells. Therefore, placental-specific imprinting provides evidence for an inheritable epigenetic state that is independent of DNA methylation and the existence of a novel imprinting mechanism at these loci.
    Genome Research 01/2014; · 14.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The junb gene behaves as an immediate early gene in bacterial lipopolysaccharide (LPS)-stimulated dendritic cells (DCs), where its transient transcriptional activation is necessary for the induction of inflammatory cytokines. junb is a short gene and its transcriptional activation by LPS depends on the binding of NF-κB to an enhancer located just downstream of its 3' UTR. Here, we have addressed the mechanisms underlying the transcriptional hyper-reactivity of junb. Using transfection and pharmacological assays to complement chromatin immunoprecipitation analyses addressing the localization of histones, polymerase II, negative elongation factor (NELF)-, DRB sensitivity-inducing factor (DSIF)- and Positive Transcription Factor b complexes, we demonstrate that junb is a RNA Pol II-paused gene where Pol II is loaded in the transcription start site domain but poorly active. Moreover, High salt-Recovered Sequence, chromosome conformation capture (3C)- and gene transfer experiments show that (i) junb is organized in a nuclear chromatin loop bringing into close spatial proximity the upstream promoter region and the downstream enhancer and (ii) this configuration permits immediate Pol II release on the junb body on binding of LPS-activated NF-κB to the enhancer. Thus, our work unveils a novel topological framework underlying fast junb transcriptional response in DCs. Moreover, it also points to a novel layer of complexity in the modes of action of NF-κB.
    Nucleic Acids Research 08/2013; · 8.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For the past three decades, assisted reproductive technologies (ART) have revolutionised infertility treatments. The use of ART is thought to be safe. However, early investigations suggested that children born as a result of ART had higher risk of diseases with epigenetic aetiologies including imprinting disorders caused by a lack of maternal methylation at imprinting control elements. In addition, large epidemiology studies have highlighted an increased risk of obstetric complications, including severe intrauterine growth restriction (IUGR) in babies conceived using ART. It is plausible that the increased frequency of IUGR may be due to abnormal imprinting, since these transcripts are key for normal fetal growth and development. To address this, we have collected a large cohort of placenta and cord blood samples from ART conceptions and compared the imprinting status with appropriate non-ART population. Using a custom DNA methylation array that simultaneously quantifies 25 imprinted differentially methylated regions we observed similar epigenetic profiles between groups. A multiplex Sequenom iPLEX allelic expression assay revealed monoallelic expression for 11 imprinted transcripts in our placenta cohort. We also observe appropriate gestational age-dependent methylation dynamics at retrotransposable elements and promoters associated with growth genes in ART placental biopsies. This study confirms that children conceived by ART do not show variability in imprinted regulation and that loss-of-imprinting is not commonly associated with non-syndromic IUGR or prematurity.
    Biology of Reproduction 07/2013; · 4.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The myogenic regulatory factor Myod and insulin-like growth factor 2 (Igf2) have been shown to interact in vitro during myogenic differentiation. In order to understand how they interact in vivo, we produced double-mutant mice lacking both the Myod and Igf2 genes. Surprisingly, these mice display neonatal lethality due to severe diaphragm atrophy. Alteration of diaphragm muscle development occurs as early as 15.5 days post-coitum in the double-mutant embryos and leads to a defect in the terminal differentiation of muscle progenitor cells. A negative-feedback loop was detected between Myod and Igf2 in embryonic muscles. Igf2 belongs to the imprinted H19-Igf2 locus. Molecular analyses show binding of Myod on a mesodermal enhancer (CS9) of the H19 gene. Chromatin conformation capture experiments reveal direct interaction of CS9 with the H19 promoter, leading to increased H19 expression in the presence of Myod. In turn, the non-coding H19 RNA represses Igf2 expression in trans. In addition, Igf2 also negatively regulates Myod expression, possibly by reducing the expression of the Srf transcription factor, a known Myod activator. In conclusion, Igf2 and Myod are tightly co-regulated in skeletal muscles and act in parallel pathways in the diaphragm, where they affect the progression of myogenic differentiation. Igf2 is therefore an essential player in the formation of a functional diaphragm in the absence of Myod.
    Development 03/2013; 140(6):1231-9. · 6.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomic imprinting is the parent-of-origin specific allelic transcriptional silencing observed in mammals, which is governed by DNA methylation established in the gametes and maintained throughout development. The frequency and extent of epimutations associated with the nine reported imprinting syndromes varies, since it is evident that aberrant pre-implantation maintenance of imprinted differentially methylated regions (DMRs) may affect multiple loci. Using a custom Illumina Goldengate array targeting 27 imprinted-DMRs we profiled allelic methylation in 65 imprinting defect patients. We identify multi-locus hypomethyaltion in numerous BWS, TNDM and PHP-1B patients, and an individual with SRS. Our data reveals a broad range of epimutations exist in certain imprinting syndromes, with the exception of PWS and AS patients that are associated with solitary SNRPN-DMR defects. A mutation analysis identified a 1 bp deletion in the ZFP57 gene in a TNDM patient with methylation defects at multiple maternal DMRs. In addition we observe missense variants in ZFP57, NLRP2, and NLRP7 that are not consistent with maternal effect and aberrant establishment or methylation maintenance, and are likely benign. This work illustrates that further extensive molecular characterization of these rare patients is required to fully understand the mechanism underlying the aetiology of imprint establishment and maintenance.
    Human Mutation 01/2013; · 5.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Paternal duplications of chromosome 6q24, a region that contains the imprinted PLAGL1 and HYMAI transcripts, are associated with transient neonatal diabetes mellitus. A common feature of imprinted genes is that they tend to cluster together, presumably as a result of sharing common cis-acting regulatory elements. To determine the extent of this imprinted cluster in human and mouse, we have undertaken a systematic analysis of allelic expression and DNA methylation of the genes mapping within an ∼1.4-Mb region flanking PLAGL1/Plagl1. We confirm that all nine neighbouring genes are biallelically expressed in both species. In human we identify two novel paternally expressed PLAGL1 coding transcripts that originate from unique promoter regions. Chromatin immunoprecipitation for CTCF and the cohesin subunits RAD21 and SMC3 reveals evolutionarily conserved binding sites within unmethylated regions ∼5 kb downstream of the PLAGL1 differentially methylated region and within the PLAGL1 3' untranslated region (UTR). Higher-order chromatin looping occurs between these regions in both expressing and non-expressing tissues, forming a non-allelic chromatin loop around the PLAGL1/Plagl1 gene. In placenta and brain tissues, we identify an additional interaction between the PLAGL1 P3/P4 promoters and the unmethylated element downstream of the PLAGL1 differentially methylated region that we propose facilitates imprinted expression of these alternative isoforms.
    Nucleic Acids Research 01/2013; · 8.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomic imprinting is a complex epigenetic mechanism of transcriptional control that utilizes DNA methylation and histone modifications to bring about parent-of-origin specific monoallelic expression in mammals. Genes subject to imprinting are often organised in clusters associated with large non-coding RNAs (ncRNAs), some of which have cis-regulatory functions. Here we have undertaken a detailed allelic expression analysis of an imprinted domain on mouse proximal chromosome 10 comprising the paternally expressed Plagl1 gene. We identified three novel Plagl1 transcripts, only one of which contains protein-coding exons. In addition, we characterised two unspliced ncRNAs, Hymai, the mouse orthologue of HYMAI, and Plagl1it (Plagl1 intronic transcript), a transcript located in intron 5 of Plagl1. Imprinted expression of these novel ncRNAs requires DNMT3L-mediated maternal DNA methylation, which is also indispensable for establishing the correct chromatin profile at the Plagl1 DMR. Significantly, the two ncRNAs are retained in the nucleus, consistent with a potential regulatory function at the imprinted domain. Analysis with catRAPID, a protein-ncRNA association prediction algorithm, suggests that Hymai and Plagl1it RNAs both have potentially high affinity for Trithorax chromatin regulators. The two ncRNAs could therefore help to protect the paternal allele from DNA methylation by attracting Trithorax proteins that mediate H3 lysine-4 methylation.
    PLoS ONE 01/2012; 7(6):e38907. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cornea is a transparent, avascular tissue that acts as the major refractive surface of the eye. Corneal transparency, assured by the inner stroma, is vital for this role. Disruption in stromal transparency can occur in some inherited or acquired diseases. As a consequence, light entering the eye is blocked or distorted, leading to decreased visual acuity. Possible treatment for restoring transparency could be via viral-based gene therapy. The stroma is particularly amenable to this strategy due to its immunoprivileged nature and low turnover rate. We assayed the potential of AAV vectors to transduce keratocytes following intra-stromal injection in vivo in the mouse cornea and ex vivo in human explants. In murine and human corneas, we transduced the entire stroma using a single injection, preferentially targeted keratocytes and achieved long-term gene transfer (up to 17 months in vivo in mice). Of the serotypes tested, AAV2/8 was the most promising for gene transfer in both mouse and man. Furthermore, transgene expression could be transiently increased following aggression to the cornea.
    PLoS ONE 01/2012; 7(4):e35318. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It was recently shown that a long non-coding RNA (lncRNA), that we named the 91H RNA (i.e. antisense H19 transcript), is overexpressed in human breast tumours and contributes in trans to the expression of the Insulin-like Growth Factor 2 (IGF2) gene on the paternal chromosome. Our preliminary experiments suggested that an H19 antisense transcript having a similar function may also be conserved in the mouse. In the present work, we further characterise the mouse 91H RNA and, using a genetic complementation approach in H19 KO myoblast cells, we show that ectopic expression of the mouse 91H RNA can up-regulate Igf2 expression in trans despite almost complete unmethylation of the Imprinting-Control Region (ICR). We then demonstrate that this activation occurs at the transcriptional level by activation of a previously unknown Igf2 promoter which displays, in mouse tissues, a preferential mesodermic expression (Pm promoter). Finally, our experiments indicate that a large excess of the H19 transcript can counteract 91H-mediated Igf2 activation. Our work contributes, in conjunction with other recent findings, to open new horizons to our understanding of Igf2 gene regulation and functions of the 91H/H19 RNAs in normal and pathological conditions.
    PLoS ONE 01/2012; 7(5):e37923. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite its critical role for mammalian gene regulation, the basic structural landscape of chromatin in living cells remains largely unknown within chromosomal territories below the megabase scale. Here, using the 3C-qPCR method, we investigate contact frequencies at high resolution within interphase chromatin at several mouse loci. We find that, at several gene-rich loci, contact frequencies undergo a periodical modulation (every 90 to 100 kb) that affects chromatin dynamics over large genomic distances (a few hundred kilobases). Interestingly, this modulation appears to be conserved in human cells, and bioinformatic analyses of locus-specific, long-range cis-interactions suggest that it may underlie the dynamics of a significant number of gene-rich domains in mammals, thus contributing to genome evolution. Finally, using an original model derived from polymer physics, we show that this modulation can be understood as a fundamental helix shape that chromatin tends to adopt in gene-rich domains when no significant locus-specific interaction takes place. Altogether, our work unveils a fundamental aspect of chromatin dynamics in mammals and contributes to a better understanding of genome organization within chromosomal territories.
    Genome biology 05/2011; 12(5):R42. · 10.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parental genomic imprinting at the Igf2/H19 locus is controlled by a methylation-sensitive CTCF insulator that prevents the access of downstream enhancers to the Igf2 gene on the maternal chromosome. However, on the paternal chromosome, it remains unclear whether long-range interactions with the enhancers are restricted to the Igf2 promoters or whether they encompass the entire gene body. Here, using the quantitative chromosome conformation capture assay, we show that, in the mouse liver, the endodermal enhancers have low contact frequencies with the Igf2 promoters but display, on the paternal chromosome, strong interactions with the intragenic differentially methylated regions 1 and 2. Interestingly, we found that enhancers also interact with a so-far poorly characterized intergenic region of the locus that produces a novel imprinted long non-coding transcript that we named the paternally expressed Igf2/H19 intergenic transcript (PIHit) RNA. PIHit is expressed exclusively from the paternal chromosome, contains a novel discrete differentially methylated region in a highly conserved sequence and, surprisingly, does not require an intact ICR/H19 gene region for its imprinting. Altogether, our data reveal a novel imprinted domain in the Igf2/H19 locus and lead us to propose a model for chromatin folding of this locus on the paternal chromosome.
    Nucleic Acids Research 04/2011; 39(14):5893-906. · 8.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously showed that genomic imprinting regulates matrix attachment region activities at the mouse Igf2 (insulin-like growth factor 2) locus and that these activities are functionally linked to neighboring differentially methylated regions (DMRs). Here, we investigate the similarly structured Dlk1/Gtl2 imprinted domain and show that in the mouse liver, the G/C-rich intergenic germ line-derived DMR, a sequence involved in domain-wide imprinting, is highly retained within the nuclear matrix fraction exclusively on the methylated paternal copy, reflecting its differential function on that chromosome. Therefore, not only "classical" A/T-rich matrix attachment region (MAR) sequences but also other important regulatory DNA elements (such as DMRs) can be recovered from genomic MAR assays following a high salt treatment. Interestingly, the recovery of one A/T-rich sequence (MAR4) from the "nuclear matrix" fraction is strongly correlated with gene expression. We show that this element possesses an intrinsic activity that favors transcription, and using chromosome conformation capture quantitative real time PCR assays, we demonstrate that the MAR4 interacts with the intergenic germ line-derived DMR specifically on the paternal allele but not with the Dlk1/Gtl2 promoters. Altogether, our findings shed a new light on gene regulation at this locus.
    Journal of Biological Chemistry 08/2008; 283(27):18612-20. · 4.65 Impact Factor

Publication Stats

79 Citations
109.05 Total Impact Points

Institutions

  • 2014
    • French National Centre for Scientific Research
      • Laboratoire de Biologie Moléculaire Eucaryote (LBME)
      Lutetia Parisorum, Île-de-France, France
  • 2012
    • Hospital Sant Joan de Déu
      • Servicio de Neonatologia
      Barcelona, Catalonia, Spain
    • IDIBELL Bellvitge Biomedical Research Institute
      • Programa de Epigenética y Biología del Cáncer - PEBC
      Barcelona, Catalonia, Spain
  • 2011
    • Institut de Génétique Moléculaire de Montpellier
      Montpelhièr, Languedoc-Roussillon, France