Eva Calderón-Sánchez

Universidad de Sevilla, Hispalis, Andalusia, Spain

Are you Eva Calderón-Sánchez?

Claim your profile

Publications (13)65.16 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: L-type Ca(2+) channels (LTCCs) are involved in the maintenance of tonic arterial contractions and regulate the RhoA/Rho-associated kinase (ROCK) sensitization cascade. We have tested the effects of individual and combined low concentrations of LTCCs and ROCK inhibitors to produce arterial relaxation without the adverse side effects of LTCCs antagonists. We have also studied whether this pharmacological strategy alters the Ca(2+)-dependent electrical properties of isolated arterial and cardiac myocytes as well as cardiac contractility. Rat basilar, human carotid and coronary arterial rings were mounted on a small-vessel myograph to measure isometric tension and cardiac contractility was measured in Langendorff-perfused rat heart. Simultaneous cytosolic Ca(2+) concentration and arterial diameter were measured in intact pressurized arteries loaded with Fura-2. Patch-clamp techniques were used to measure electrical properties in isolated cardiac and arterial myocytes. Low concentrations of LTCCs and ROCK inhibitors reduced the tonic component of moderate depolarization-evoked contraction, leaving the phasic component practically unaltered. This selective vasorelaxant effect was more marked when the LTCCs and ROCK inhibitors were applied together. In the concentration range used (nM), Ca(2+) currents in arterial myocytes, cardiac action potentials and heart contractility were unaffected by this pharmacological approach. In conclusion, low doses of LTCCs and ROCK inhibitors could be used to selectively relax precontracted arteries in pathologic conditions such as hypertension, and cerebral or coronary spasms with minor side effects on physiological contractile properties of vascular and cardiac myocytes.
    European journal of pharmacology 03/2014; · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: AIMS: Urotensin-II (UII) is a vasoactive peptide that promotes vascular smooth muscle cells (VSMCs) proliferation and is involved in the pathogenesis of atherosclerosis, restenosis and vascular remodeling. This study aimed to determine the role of calcium (Ca2+)-dependent signaling and alternative signaling pathways in UII-evoked VSMCs proliferation focussing on store-operated Ca2+ entry (SOCE) and epithelium growth factor receptor (EGFR) transactivation. METHODS AND RESULTS: We used primary cultures of VSMCs isolated from wistar rat aorta to investigate the effects of UII on intracellular Ca2+ mobilization, and proliferation determined by 5-bromo-2-deoxyuridine (BrdU) assay. We found that UII enhanced intracellular Ca2+ concentration ([Ca2+]i) which was significantly reduced by classical SOCE inhibitors and by knockdown of essential components of the SOCE such as STIM1, Orai1, or TRPC1. Moreover, UII activated a Gd3+-sensitive current with similar features of the Ca2+ release-activated Ca2+ current (ICRAC). Additionally, UII stimulated VSMCs proliferation and Ca2+/cAMP response element-binding protein (CREB) activation through SOCE pathway that involved STIM1, Orai1, and TRPC1. Co-immunoprecipitation experiments showed that UII promoted the association between Orai1 and STIM1, and between Orai1 and TRPC1. Moreover, we determined that epithelium growth factor receptor (EGFR) transactivation, extracellular signal-regulated kinase (ERK) and Ca2+/calmodulin-dependent kinase (CaMK) signaling pathways were involved in both UII-mediated Ca2+ influx, CREB activation and VSMCs proliferation. CONCLUSION: Our data show for the first time that UII-induced VSMCs proliferation and CREB activation requires a complex signaling pathway that involves on the one hand SOCE mediated by STIM1, Orai1 and TRPC1, and on the other hand EGFR, ERK, and CaMK activation.
    Cardiovascular Research 08/2013; · 5.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Urotensin-II (UII) is a vasoactive peptide that promotes vascular smooth muscle cells (VSMCs) proliferation and is involved in the pathogenesis of atherosclerosis, restenosis and vascular remodeling. This study aimed to determine the role of calcium (Ca(2+))-dependent signaling and alternative signaling pathways in UII-evoked VSMCs proliferation focussing on store-operated Ca(2+) entry (SOCE) and epithelium growth factor receptor (EGFR) transactivation.Methods and ResultsWe used primary cultures of VSMCs isolated form wistar rat aorta to investigate the effects of UII on intracellular Ca(2+) mobilization, and proliferation determined by 5-bromo-2-deoxyuridine (BrdU) assay. We found that UII enhanced intracellular Ca(2+) concentration ([Ca(2+)]i) which was significantly reduced by classical SOCE inhibitors and by knockdown of essential components of the SOCE such as STIM1, Orai1, or TRPC1. Moreover, UII activated a Gd(3+)-sensitive current with similar features of the Ca(2+) release-activated Ca(2+) current (ICRAC). Additionally, UII stimulated VSMCs proliferation and Ca(2+)/cAMP response element-binding protein (CREB) activation through SOCE pathway that involved STIM1, Orai1, and TRPC1. Co-immunoprecipitation experiments showed that UII promoted the association between Orai1 and STIM1, and between Orai1 and TRPC1. Moreover, we determined that epithelium growth factor receptor (EGFR) transactivation, extracellular signal-regulated kinase (ERK) and Ca(2+)/calmodulin-dependent kinase (CaMK) signaling pathways were involved in both UII-mediated Ca(2+) influx, CREB activation and VSMCs proliferation. Our data show for the first time that UII-induced VSMCs proliferation and CREB activation requires a complex signaling pathway that involves on the one hand SOCE mediated by STIM1, Orai1 and TRPC1, and on the other hand EGFR, ERK, and CaMK activation.
    Cardiovascular Research 08/2013; · 5.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human urotensin-II (UII) is considered the most potentendogenous vasoconstrictor discovered to date, although the precise mechanism activated downstream of its receptor UTS2R in blood vessels remains elusive. The aim of this study was to determine the role of the store operated Ca(2+) entry (SOCE) signaling pathway in UII-induced coronary artery vasoconstriction. We used a combination of isometric tension measurement, Ca(2+) imaging, pharmacology, and molecular approaches to study UII-mediated rat coronary artery vasoconstriction and intracellular Ca(2+) mobilization in coronary smooth muscle cells. We found that UII promoted dose-dependent vasoconstriction and elicited Ca(2+) and Mn(2+) influx, which were sensitive to classical SOCE inhibitors. In addition, knockdown of either STIM1 or Orai1 essentially inhibited UII-mediated SOCE and prevented UII but not high-KCL evoked contraction in transfected coronary artery. Moreover, we found that Ca(2+)-independent phospholipase A(2)β was involved in UII effects and that is colocalized with STIM1 in different submembrane compartments. Importantly, STIM1 but not Orai1 downregulation inhibits significantly independent phospholipase A(2) activation. Furthermore, lysophosphatidylcholine, an independent phospholipase A(2) product, activated Orai1 but not STIM1-dependent contraction and SOCE. Here, we demonstrated that different critical players of SOCE signaling pathway are required for UII-induced vasoconstriction of rat coronary artery.
    Arteriosclerosis Thrombosis and Vascular Biology 01/2012; 32(5):1325-32. · 6.34 Impact Factor
  • E Calderón-Sánchez, M Rodriguez-Moyano, T Smani
    [Show abstract] [Hide abstract]
    ABSTRACT: Immunophilins belong to a highly conserved family of proteins with cis-trans peptidyl-prolyl isomerase activity, generally classified by their ability to selectively bind specific immunosuppressive drugs, thereby regulating their activity. Immunophilins include Cyclophilins (CyPs), which are specific targets of the immunosuppressant drug cyclosporin A (CsA); FKBPs (FK506-binding proteins), that are sensitive to both FK506 (tacrolimus) and rapamycin (sirolimus); and FCBPs which are sensitive to CsA and FK506. Immunophilins are expressed in multiple human tissues, including brain, heart, kidney, liver and lung and regulate functions as diverse as intracellular calcium signaling, protein transport, protein folding and gene transcription. In particular, immunophilins play key functional roles in the cardiovascular system, where they can associate with proteins such as ryanodine and IP3 receptors (RyR and IP3R), calcineurin, and mitochondrial permeability transition pore (MPTP) and Heat-shock proteins-caveolin-cholesterol complex and regulate their function. The biological importance of immunophilins is further revealed by the pathophysiology, as they have been implicated in several cardiovascular diseases, including vascular stenosis, atherosclerosis, heart failure and arrhythmias. This review summarizes some of the most recent studies on immunophilins and focuses on their roles in the mechanisms underlying the cardiovascular disease.
    Current Medicinal Chemistry 11/2011; 18(35):5408-13. · 3.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ischemia/reperfusion (I/R) damage in the heart occurs mainly during the first minutes of reperfusion. Urocortin (Ucn) is a member of the corticotrophin-releasing factor that has been identified as a potent endogenous cardioprotector peptide when used in pre- and postconditioning protocols. However, the underlying mechanisms are not completely elucidated. Here, we focused on intracellular calcium ([Ca(2+)](i)) handling by Ucn when applied in early reperfusion. We used Langendorff-perfused rat hearts to determine hemodynamic parameters, and confocal microscopy to study global [Ca(2+)](i) transients evoked by electrical stimulation in isolated cardiomyocytes loaded with fluorescence Ca(2+) dye fluo-3AM. We found that the acute application of Ucn at the onset of reperfusion, in isolated hearts submitted to ischemia, fully recovered the hearts contractility and relaxation. In isolated cardiac myocytes, following ischemia we observed that the diastolic [Ca(2+)](i) was increased, the systolic [Ca(2+)](i) transients amplitude were depressed and sarcoplasmic reticulum (SR) Ca(2+) load was reduced. These effects were correlated to a decrease in the Na(+)/Ca(2+) exchanger (NCX) activity. Importantly, Ucn applied at reperfusion produced a complete recovery in diastolic [Ca(2+)](i) and global [Ca(2+)](i) transient amplitude, which were due to NCX activity improvement. In conclusion, we demonstrated that [Ca(2+)](i) handling play an essential role in postconditioning action of Ucn.
    Cell calcium 06/2011; 50(1):84-90. · 4.29 Impact Factor
  • Biophysical Journal 02/2011; 100(3):83-. · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to elucidate the signalling pathways implicated in the modulation of cardiac L-type Ca(2+) channels by urocortin (Ucn) in ventricular myocytes. Adult rat ventricular myocytes were stimulated in vitro with Ucn for 20-40 min. L-type calcium currents (I(CaL)) were measured with the patch-clamp technique, whereas quantification of activation of extracellular signal-regulated kinases 1/2 (ERK1/2) was assessed by sandwich-ELISA. Ucn induced a significant increase in I(CaL) density that was not prevented by the protein kinase A (PKA) inhibitor KT-5720 or the non-selective antagonist of guanine nucleotide exchange factor brefeldin A. The Ucn effect was antagonized by astressin, a corticotropin-releasing factor receptor-2 (CRF-R2) antagonist, and significantly reduced by protein kinase C (PKC) and ERK1/2 inhibitors. The cyclic AMP (cAMP) analogue 8-pCPT-2'OMe-cAMP, which selectively activates the exchange protein activated by cAMP (Epac), was ineffective in modifying I(CaL). Analysis of phospho-ERK1/2 showed that Ucn induced a significant activation of the ERK1/2 pathway in ventricular myocytes and this effect was prevented by pre-incubation with PKC inhibitors. The present study provides evidence of new mechanisms involved in the modulation of L-type Ca(2+) channels by Ucn in adult ventricular myocytes. We propose that the marked increase in I(CaL) density induced by Ucn is mediated through CRF-R2 and involves PKC-dependent activation of the ERK1/2 pathway, whereas PKA and Epac signalling are not implicated.
    Cardiovascular Research 02/2010; 87(3):459-66. · 5.81 Impact Factor
  • Biophysical Journal 01/2010; 98(3). · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study is to evaluate the positive inotropic effect of urocortin (Ucn) and to characterize its signalling pathways. Contractility was measured in ex vivo Langendorff-perfused hearts isolated from Wistar rats. Isolated ventricular cardiomyocytes were used to analyse intracellular calcium ([Ca(2+)](i)) transients evoked by electrical stimulation and L-type Ca(2+) current by confocal microscopy and whole-cell patch-clamping, respectively. The application of Ucn to perfused hearts induced progressive, sustained, and potent inotropic and lusitropic effects that were dose-dependent with an EC(50) of approximately 8 nM. Ucn effects were independent of protein kinase A (PKA) activation but were significantly reduced by protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) inhibitors and by brefeldin A, an antagonist of guanine nucleotide exchange factor, suggested to be an inhibitor of exchange protein activated by cAMP (Epac). These whole-organ effects were correlated with the inotropic effects observed in isolated cells: Ucn increased I(CaL) density, [Ca(2+)](i) transients, cell shortening and Ca(2+) content of sarcoplasmic reticulum. Our results show that Ucn evokes potent positive inotropic and lusitropic effects mediated, at least in part, by an increase in I(CaL) and [Ca(2+)](i) transient amplitude. These effects may involve the activation of Epac, PKC, and MAPK signalling pathways.
    Cardiovascular Research 06/2009; 83(4):717-25. · 5.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously described in rat basilar arterial myocytes that in the absence of extracellular Ca(2+) influx, activation of L-type Ca(2+) channels stimulates a metabotropic cascade leading to Ca(2+) release from the sarcoplasmic reticulum (SR) and contraction [a calcium channel-induced Ca(2+) release (CCICR) mechanism]. On the other hand, it is known that hypoxia reduces Ca(2+) channel activity in coronary myocytes. In the present study, we have investigated whether CCICR is present in coronary arterial myocytes and whether arterial ring contraction induced by CCICR can be inhibited by hypoxia. Isometric force, arterial diameter, cytosolic [Ca(2+)] and electrical activity were recorded on mammalian (porcine, rat, and human) coronary artery preparations (dispersed myocytes, arterial rings, and intact arterial segments). In the absence of extracellular Ca(2+), Ca(2+) channel activation increased cytosolic [Ca(2+)] in isolated myocytes and contracted arterial rings. This contraction was suppressed by antagonists of L-type Ca(2+) channels and by inhibiting Ca(2+) release from the SR. Hypoxia induced dilatation of coronary arterial rings pre-contracted by activation of Ca(2+) channels in the absence of extracellular Ca(2+). This effect was present although K(ATP) channels and Rho kinase were blocked by glibenclamide and Y27632, respectively. We show that Ca(2+) channel activation can induce metabotropic coronary arterial ring contraction in the absence of extracellular Ca(2+) and that this CCICR mechanism is inhibited by hypoxia. Thus, besides reduction of Ca(2+) entry through Ca(2+) channels, hypoxia seems to induce coronary vasorelaxation by inhibition of metabotropic CCICR.
    Cardiovascular Research 02/2009; 82(1):115-24. · 5.81 Impact Factor
  • Journal of Molecular and Cellular Cardiology - J MOL CELL CARDIOL. 01/2008; 44(4):764-764.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Urocortin has been shown to produce vasodilatation in several arteries, but the precise mechanism of its action is still poorly understood. Here we demonstrate the role of store operated Ca2+ entry (SOCE) regulated by Ca2+-independent phospholipase A2 (iPLA2) in phenylephrine hydrochloride (PE)-induced vasoconstriction, and we present the first evidence that urocortin induces relaxation by the modulation of SOCE and iPLA2 in rat coronary artery. Urocortin produces an endothelium independent relaxation, and its effect is concentration-dependent (IC50 approximately = 4.5 nmol/L). We show in coronary smooth muscle cells (SMCs) that urocortin inhibits iPLA2 activation, a crucial step for SOC channel activation, and prevents Ca2+ influx evoked by the emptying of the stores via a cAMP and protein kinase A (PKA)-dependent mechanism. Lysophophatidylcholine and lysophosphatidylinositol, products of iPLA2, exactly mimic the effect of the depletion of the stores in presence of urocortin. Furthermore, we report that long treatment with urocortin downregulates iPLA2 mRNA and proteins expression in rat coronary smooth muscle cells. In summary, we propose a new mechanism of vasodilatation by urocortin which involves the regulation of iPLA2 and SOCE via the stimulation of a cAMP/PKA-dependent signal transduction cascade in rat coronary artery.
    Circulation Research 12/2007; 101(11):1194-203. · 11.86 Impact Factor

Publication Stats

73 Citations
65.16 Total Impact Points

Institutions

  • 2009–2014
    • Universidad de Sevilla
      • Instituto de Biomedicina de Sevilla (IBIS)
      Hispalis, Andalusia, Spain
  • 2012
    • Universidad de Extremadura
      Ara Pacis Augustalis, Extremadura, Spain
  • 2011
    • Hospital Universitario Virgen del Rocío
      Hispalis, Andalusia, Spain