E. J. W. de Mooij

University of Toronto, Toronto, Ontario, Canada

Are you E. J. W. de Mooij?

Claim your profile

Publications (38)208.73 Total impact

  • Lisa J. Esteves, Ernst J. W. De Mooij, Ray Jayawardhana
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a comprehensive analysis of planetary phase variations, including possible planetary light offsets, using eighteen quarters of data from the Kepler space telescope. After correcting for systematics, we found fourteen systems with significant detections in each of the phase curve components: planet's phase function, secondary eclipse, Doppler boosting and ellipsoidal variations. We model the full phase curve simultaneously, including primary and secondary transits, and derive albedos, day- and night-side temperatures and planet masses. We find that KOI-13b, with a small eccentricity, is the only planet for which an eccentric orbit is favored. We detect a third harmonic with an amplitude of 1.9 ppm for HAT-P-7b for the first time, and confirm the third harmonic for KOI-13b reported in Esteves et al. (2013): both could be due to their spin-orbit misalignments. We also performed a bootstrap analysis of each of our targets, and conclude that the photometric variations of Kepler-43b are not of planetary origin but instead a result of stellar variability and/or residual systematics. For seven planets, we find that the planetary light peak is offset from the substellar point: of those, the hottest two exhibit shifts eastward or to the evening-side, while the cooler five peak westward or on the morning-side. Our findings dramatically increase the number of Kepler planets with detected planetary light offsets, and provide the first evidence in the Kepler data for a correlation between the peak offset direction and the planet's temperature. Such a correlation could arise if thermal emission dominates light from hotter planets that harbor hot spots shifted to the east, as theoretically predicted, while reflected light dominates cooler planets with clouds westward of the substellar point (i.e. on the morning-side).
    07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of WTS-2 b, an unusually close-in 1.02-day hot Jupiter (Mp=1.12MJ, Rp=1.363RJ) orbiting a K2V star, which has a possible gravitationally-bound M-dwarf companion at 0.6 arcsec separation contributing ~20 percent of the total flux in the observed J-band light curve. The planet is only 1.5 times the separation from its host star at which it would be destroyed by Roche lobe overflow, and has a predicted remaining lifetime of just ~40 Myr, assuming a tidal dissipation quality factor of Q'*=10^6. Q'* is a key factor in determining how frictional processes within a host star affect the orbital evolution of its companion giant planets, but it is currently poorly constrained by observations. We calculate that the orbital decay of WTS-2 b would correspond to a shift in its transit arrival time of T_shift~17 seconds after 15 years assuming Q'*=10^6. A shift less than this would place a direct observational constraint on the lower limit of Q'* in this system. We also report a correction to the previously published expected T_shift for WASP-18 b, finding that T_shift=356 seconds after 10 years for Q'*=10^6, which is much larger than the estimated 28 seconds quoted in WASP-18 b discovery paper. We attempted to constrain Q'* via a study of the entire population of known transiting hot Jupiters, but our results were inconclusive, requiring a more detailed treatment of transit survey sensitivities at long periods. We conclude that the most informative and straight-forward constraints on Q'* will be obtained by direct observational measurements of the shift in transit arrival times in individual hot Jupiter systems. We show that this is achievable across the mass spectrum of exoplanet host stars within a decade, and will directly probe the effects of stellar interior structure on tidal dissipation.
    Monthly Notices of the Royal Astronomical Society 02/2014; 440(2). · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The robust determination of the chemical make-up of exoplanet atmospheres is crucial to understanding their structure, formation, and evolution, particularly in the case of the major carbon- and oxygen-bearing species. We present ground-based high-resolution spectra from CRIRES/VLT at 3.2 microns of several transiting and non-transiting hot Jupiter atmospheres (51 Peg b, tau Boo b, HD 209458 b), in which we have searched for the radial velocity signature of water, methane and carbon dioxide molecules in the planetary atmospheric spectra. We compare the results of our search with the detections of CO already reported in these hot Jupiter atmospheres, and discuss their temperature-pressure profiles and relative abundance ratios. Preliminary results indicate a significant abundance of water in 51 Peg b, consistent with tentative reports of water at 2.3 microns and suggest an oxygen-rich atmosphere.
    01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [Abridged] Recently, there have been a series of detections of molecules in the atmospheres of extrasolar planets using high spectral resolution (R~100,000) observations, mostly using the CRyogenic high-resolution InfraRed Echelle Spectrograph (CRIRES) on the Very Large Telescope. These measurements are able to resolve molecular bands into individual absorption lines. Observing many lines simultaneously as their Doppler shift changes with time allows the detection of specific molecules in the atmosphere of the exoplanet. We performed simulations of high-resolution CRIRES observations of a planet's thermal emission and transit between 1-5 micron and performed a cross-correlation analysis on these results to assess how well the planet signal can be extracted. We also simulated day-side and night-side spectra at high spectral resolution for planets with and without a day-side temperature inversion, based on the cases of HD 189733b and HD 209458b. Several small wavelength regions in the L-band promise to yield cross-correlation signals from the thermal emission of hot Jupiters that can exceed those of the current detections by up to a factor of 2-3 for the same integration time. For transit observations, the H-band is also attractive, with the H, K, and L-band giving cross-correlation signals of similar strength. High-resolution night-side spectra of hot Jupiters can give cross-correlation signals as high as the day-side, or even higher. We show that there are many new possibilities for high-resolution observations of exoplanet atmospheres that have expected planet signals at least as high as those already detected. Hence, high-resolution observations at well-chosen wavelengths and at different phases can improve our knowledge about hot Jupiter atmospheres significantly, already with currently available instrumentation.
    12/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The search for signs of life elsewhere in the Universe requires the remote detection of molecules in the atmospheres of exoplanets. Recent progress with high-resolution infrared spectra obtained with CRIRES has led to the first ground-based detections of carbon monoxide and water in the atmospheres of hot giant exoplanets. This avenue of exoplanet characterisation has the potential to identify biomarkers in the atmospheres of Earth analogues with the European Extremely Large Telescope. The current detections not only provide evidence for how the composition of a hot giant planet atmosphere can affect its thermal structure and cloud formation processes, but also have the potential to constrain the universal mechanism for planet formation by pinpointing the birth location of the planet in its protoplanetary disc.
    11/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present recent results from high-resolution spectroscopy of bright transiting and non-transiting hot Jupiters, including preliminary results for the day-side of HD 209458 b. Using the CRyogenic InfraRed Echelle Spectrograph at the VLT, we have detected unambiguous signals of carbon monoxide in the planetary atmospheres through the use of novel data analysis techniques. The method has proven successful for both transmission spectroscopy of HD 209458 b [4], day-side spectroscopy of HD 189733 b [3] and day-side spectroscopy of the non-transiting planet Tau Bootis b [1]. Furthermore, the non-transiting planet 51 Pegasi b shows a promising combined signal from CO and H2O [2]. These detections can also provide the absolute planet mass, orbital velocity, inclination, and information about the temperature-pressure profile of the planetary atmosphere.
    09/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report a 4.8 sigma detection of water absorption features in the day side spectrum of the hot Jupiter HD 189733 b. We used high-resolution (R~100,000) spectra taken at 3.2 microns with CRIRES on the VLT to trace the radial-velocity shift of the water features in the planet's day side atmosphere during 5 h of its 2.2 d orbit as it approached secondary eclipse. Despite considerable telluric contamination in this wavelength regime, we detect the signal within our uncertainties at the expected combination of systemic velocity (Vsys=-3 +5-6 km/s) and planet orbital velocity (Kp=154 +14-10 km/s), and determine a H2O line contrast ratio of (1.3+/-0.2)x10^-3 with respect to the stellar continuum. We find no evidence of significant absorption or emission from other carbon-bearing molecules, such as methane, although we do note a marginal increase in the significance of our detection to 5.1 sigma with the inclusion of carbon dioxide in our template spectrum. This result demonstrates that ground-based, high-resolution spectroscopy is suited to finding not just simple molecules like CO, but also to more complex molecules like H2O even in highly telluric contaminated regions of the Earth's transmission spectrum. It is a powerful tool that can be used for conducting an immediate census of the carbon- and oxygen-bearing molecules in the atmospheres of giant planets, and will potentially allow the formation and migration history of these planets to be constrained by the measurement of their atmospheric C/O ratios.
    Monthly Notices of the Royal Astronomical Society 07/2013; · 5.52 Impact Factor
  • Mariangela Bonavita, Ernst J. W. de Mooij, Ray Jayawardhana
    [Show abstract] [Hide abstract]
    ABSTRACT: Several tools have been developed in the past few years for the statistical analysis of the exoplanet search surveys, mostly using a combination of Monte-Carlo simulations or a Bayesian approach.Here we present the Quick-MESS, a grid-based, non-Monte Carlo tool aimed to perform statistical analyses on results from and help with the planning of direct imaging surveys. Quick-MESS uses the (expected) contrast curves for direct imaging surveys to assess for each target the probability that a planet of a given mass and semi-major axis can be detected. By using a grid-based approach Quick-MESS is typically more than an order of magnitude faster than tools based on Monte-Carlo sampling of the planet distribution. In addition, Quick-MESS is extremely flexible, enabling the study of a large range of parameter space for the mass and semi-major axes distributions without the need of re-simulating the planet distribution. In order to show examples of the capabilities of the Quick-MESS, we present the analysis of the Gemini Deep Planet Survey and the predictions for upcoming surveys with extreme-AO instruments.
    Publications of the Astronomical Society of the Pacific 06/2013; · 3.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the atmosphere of GJ1214b, a transiting super-Earth planet with a low mean density, by measuring its transit depth as a function of wavelength in the blue optical portion of the spectrum. It is thought that this planet is either a mini-Neptune, consisting of a rocky core with a thick, hydrogen-rich atmosphere, or a planet with a composition dominated by water. Most observations favor a water-dominated atmosphere with a small scale-height, however, some observations indicate that GJ1214b could have an extended atmosphere with a cloud layer muting the molecular features. In an atmosphere with a large scale-height, Rayleigh scattering at blue wavelengths is likely to cause a measurable increase in the apparent size of the planet towards the blue. We observed the transit of GJ1214b in the B-band with the FOcal Reducing Spectrograph (FORS) at the Very Large Telescope (VLT) and in the g-band with both ACAM on the William Hershel Telescope (WHT) and the Wide Field Camera (WFC) at the Isaac Newton Telescope (INT). We find a planet-to-star radius ratio in the B-band of 0.1162+/-0.0017, and in the g-band 0.1180+/-0.0009 and 0.1174+/-0.0017 for the WHT & INT observations respectively. These optical data do not show significant deviations from previous measurements at longer wavelengths. In fact, a flat transmission spectrum across all wavelengths best describes the combined observations. When atmospheric models are considered a small scale-height water-dominated model fits the data best.
    The Astrophysical Journal 05/2013; 771(2). · 6.73 Impact Factor
  • Source
    Lisa J. Esteves, Ernst J. W. De Mooij, Ray Jayawardhana
    [Show abstract] [Hide abstract]
    ABSTRACT: We have conducted a comprehensive search for optical phase variations of all planet candidates with tight orbits in fifteen quarters of data from the Kepler space telescope. After correcting for systematics, we found eight systems that appear to show secondary eclipses as well as phase variations. Of these, five (Kepler-5, Kepler-6, Kepler-8, KOI-64 and KOI-2133) are new and three (TrES-2, HAT-P-7 and KOI-13) have previously published phase curves, albeit with many fewer observations. We model the full phase curve of each planet candidate, including the primary and secondary transits, and derive their albedos, day- and night-side temperatures, ellipsoidal variations and Doppler beaming. We find that KOI-64 and KOI-2133 have night-side temperatures well above their equilibrium values (while KOI-2133 also has an albedo >1), so we conclude that they are likely to be self-luminous objects rather than planets. The characteristics of the six other candidates are consistent with their being planets with low geometric albedos (<0.3). For TrES-2 and KOI-13, the Kepler bandpass appears to probe atmospheric layers hotter than the planet's equilibrium temperature. For KOI-13, we detect a never-before-seen third cosine harmonic with an amplitude of 6.7+/-0.3 ppm and a phase shift of -1.1+/-0.1 radians in the phase curve residual, which could be due to its spin-orbit misalignment. We report derived planetary parameters for all six planets, including masses from ellipsoidal variations and Doppler beaming, and compare our results to published values when available. Our results nearly double the number of Kepler exoplanets with measured phase curve variations, thus providing valuable new constraints on the properties of close-in hot Jupiters.
    The Astrophysical Journal 05/2013; 772(1). · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The lightcurves of two secondary eclipses of WASP-33b observed in the Ks-band with LIRIS on August 18 and September 20, 2010 respectively. (2 data files).
    VizieR Online Data Catalog. 05/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [Abridged] After many attempts over more than a decade, high-resolution spectroscopy has recently delivered its first detections of molecular absorption in exoplanet atmospheres, both in transmission and thermal emission spectra. Targeting the combined signal from individual lines in molecular bands, these measurements use variations in the planet radial velocity to disentangle the planet signal from telluric and stellar contaminants. In this paper we apply high resolution spectroscopy to probe molecular absorption in the day-side spectrum of the bright transiting hot Jupiter HD 189733b. We observed HD 189733b with the CRIRES high-resolution near-infrared spectograph on the Very Large Telescope during three nights. We detect a 5-sigma absorption signal from CO at a contrast level of ~4.5e-4 with respect to the stellar continuum, revealing the planet orbital radial velocity at 154+4/-3 km s-1. This allows us to solve for the planet and stellar mass in a similar way as for stellar eclipsing binaries, resulting in Ms= 0.846+0.068/-0.049 Msun and Mp= 1.162+0.058/-0.039 MJup. No significant absorption is detected from H2O, CO2 or CH4 and we determined upper limits on their line contrasts here. The detection of CO in the day-side spectrum of HD 189733b can be made consistent with the haze layer proposed to explain the optical to near-infrared transmission spectrum if the layer is optically thin at the normal incidence angles probed by our observations, or if the CO abundance is high enough for the CO absorption to originate from above the haze. Our non-detection of CO2 at 2.0 micron is not inconsistent with the deep CO2 absorption from low resolution NICMOS secondary eclipse data in the same wavelength range. If genuine, the absorption would be so strong that it blanks out any planet light completely in this wavelength range, leaving no high-resolution signal to be measured.
    Astronomy and Astrophysics 04/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Multi-site All-Sky CAmeRA, MASCARA, is an instrument currently in the design phase, that is aimed to find the brightest transiting planet systems in the sky. It will consist of several stations across the globe, each monitoring the near-entire sky using a battery of CCD-detectors plus wide-field lenses, targeting stars in the V = 4 - 8 magnitude range. MASCARA will be able to detect individual transits from Jupiter-size planets over this whole magnitude range, while smaller planets will be found by co-adding transit events. We expect to discover up to a dozen bright transit systems in this way. These will be extremely valuable for atmospheric follow-up studies.
    04/2013;
  • Ernst J. W. de Mooij, Ray Jayawardhana
    04/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we present ground-based high-resolution spectroscopy of 51 Pegasi using CRIRES at the Very Large Telescope. The system was observed for 3x5 hours at 2.3 {\mu}m at a spectral resolution of R = 100,000, targeting potential signatures from carbon monoxide, water vapour and methane in the planet's dayside spectrum. In the first 2x5 hours of data, we find a combined signal from carbon monoxide and water in absorption at a formal 5.9{\sigma} confidence level, indicating a non-inverted atmosphere. We derive a planet mass of M_P = (0.46 +- 0.02) M_Jup and an orbital inclination i between 79.6 and 82.2 degrees, with the upper limit set by the non-detection of the planet transit in previous photometric monitoring. However, there is no trace of the signal in the final 5 hours of data. A statistical analysis indicates that the signal from the first two nights is robust, but we find no compelling explanation for its absence in the final night. The latter suffers from stronger noise residuals and greater instrumental instability than the first two nights, but these cannot fully account for the missing signal. It is possible that the integrated dayside emission from 51 Peg b is instead strongly affected by weather. However, more data are required before we can claim any time variability in the planet's atmosphere.
    The Astrophysical Journal 02/2013; 767(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, day-side emission from about a dozen hot Jupiters has been detected through ground-based secondary eclipse observations in the near-infrared. These near-infrared observations are vital for determining the energy budgets of hot Jupiters, since they probe the planet's spectral energy distribution near its peak. The aim of this work is to measure the Ks-band secondary eclipse depth of WASP-33b, the first planet discovered to transit an A-type star. This planet receives the highest level of irradiation of all transiting planets discovered to date. Furthermore, its host-star shows pulsations and is classified as a low-amplitude delta-Scuti. As part of our GROUnd-based Secondary Eclipse (GROUSE) project we have obtained observations of two separate secondary eclipses of WASP-33b in the Ks-band using the LIRIS instrument on the William Herschel Telescope (WHT). The telescope was significantly defocused to avoid saturation of the detector for this bright star (K~7.5). To increase the stability and the cadence of the observations, they were performed in staring mode. We collected a total of 5100 and 6900 frames for the first and the second night respectively, both with an average cadence of 3.3 seconds. On the second night the eclipse is detected at the 12-sigma level, with a measured eclipse depth of 0.244+0.027-0.020 %. This eclipse depth corresponds to a brightness temperature of 3270+115-160 K. The measured brightness temperature on the second night is consistent with the expected equilibrium temperature for a planet with a very low albedo and a rapid re-radiation of the absorbed stellar light. For the other night the short out-of-eclipse baseline prevents good corrections for the stellar pulsations and systematic effects, which makes this dataset unreliable for eclipse depth measurements. This demonstrates the need of getting a sufficient out-of-eclipse baseline.
    Astronomy and Astrophysics 01/2013; · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of 16 detached M dwarf eclipsing binaries with J < 16 mag and provide a detailed characterization of three of them, using high-precision infrared light curves from the WFCAM Transit Survey (WTS). Such systems provide the most accurate and model-independent method for measuring the fundamental parameters of these poorly understood yet numerous stars, which currently lack sufficient observations to precisely calibrate stellar evolution models. We fully solve for the masses and radii of three of the systems, finding orbital periods in the range 1.5 < P < 4.9 d, with masses spanning 0.35-0.50 M⊙ and radii between 0.38 and 0.50 R⊙, with uncertainties of ˜3.5-6.4 per cent in mass and ˜2.7-5.5 per cent in radius. Close companions in short-period binaries are expected to be tidally locked into fast rotational velocities, resulting in high levels of magnetic activity. This is predicted to inflate their radii by inhibiting convective flow and increasing starspot coverage. The radii of the WTS systems are inflated above model predictions by ˜3-12 per cent, in agreement with the observed trend, despite an expected lower systematic contribution from starspot signals at infrared wavelengths. We searched for correlation between the orbital period and radius inflation by combining our results with all existing M dwarf radius measurements of comparable precision, but we found no statistically significant evidence for a decrease in radius inflation for longer period, less active systems. Radius inflation continues to exists in non-synchronized systems, indicating that the problem remains even for very low activity M dwarfs. Resolving this issue is vital not only for understanding the most populous stars in the Universe, but also for characterizing their planetary companions, which hold the best prospects for finding Earth-like planets in the traditional habitable zone.
    Monthly Notices of the Royal Astronomical Society 10/2012; 426(2):1507-1532. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Multi-site All-sky CAmeRA MASCARA is an instrument concept consisting of several stations across the globe, with each station containing a battery of low-cost cameras to monitor the near-entire sky at each location. Once all stations have been installed, MASCARA will be able to provide a nearly 24-hr coverage of the complete dark sky, down to magnitude 8, at sub-minute cadence. Its purpose is to find the brightest transiting exoplanet systems, expected in the V=4-8 magnitude range - currently not probed by space- or ground-based surveys. The bright/nearby transiting planet systems, which MASCARA will discover, will be the key targets for detailed planet atmosphere observations. We present studies on the initial design of a MASCARA station, including the camera housing, domes, and computer equipment, and on the photometric stability of low-cost cameras showing that a precision of 0.3-1% per hour can be readily achieved. We plan to roll out the first MASCARA station before the end of 2013. A 5-station MASCARA can within two years discover up to a dozen of the brightest transiting planet systems in the sky.
    Proc SPIE 08/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The giant planet orbiting τ Boötis (named τ Boötis b) was amongst the first extrasolar planets to be discovered. It is one of the brightest exoplanets and one of the nearest to us, with an orbital period of just a few days. Over the course of more than a decade, measurements of its orbital inclination have been announced and refuted, and have hitherto remained elusive. Here we report the detection of carbon monoxide absorption in the thermal dayside spectrum of τ Boötis b. At a spectral resolution of ∼100,000, we trace the change in the radial velocity of the planet over a large range in phase, determining an orbital inclination of 44.5° ± 1.5° and a mass 5.95 ± 0.28 times that of Jupiter, demonstrating that atmospheric characterization is possible for non-transiting planets. The strong absorption signal points to an atmosphere with a temperature that is decreasing towards higher altitudes, in contrast to the temperature inversion inferred for other highly irradiated planets. This supports the hypothesis that the absorbing compounds believed to cause such atmospheric inversions are destroyed in τ Boötis b by the ultraviolet emission from the active host star.
    Nature 06/2012; 486(7404):502-4. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of 16 detached M-dwarf eclipsing binaries with J<16 mag and provide a detailed characterisation of three of them, using high-precision infrared light curves from the WFCAM Transit Survey (WTS). Such systems provide the most accurate and model-independent method for measuring the fundamental parameters of these poorly understood yet numerous stars, which currently lack sufficient observations to precisely calibrate stellar evolution models. We fully solve for the masses and radii of three of the systems, finding orbital periods in the range 1.5<P<4.9 days, with masses spanning 0.35-0.50 Msun and radii between 0.38-0.50 Rsun, with uncertainties of ~3.5-6.4% in mass and ~2.7-5.5% in radius. Close-companions in short-period binaries are expected to be tidally-locked into fast rotational velocities, resulting in high levels of magnetic activity. This is predicted to inflate their radii by inhibiting convective flow and increasing star spot coverage. The radii of the WTS systems are inflated above model predictions by ~3-12%, in agreement with the observed trend, despite an expected lower systematic contribution from star spots signals at infrared wavelengths. We searched for correlation between the orbital period and radius inflation by combining our results with all existing M-dwarf radius measurements of comparable precision, but we found no statistically significant evidence for a decrease in radius inflation for longer period, less active systems. Radius inflation continues to exists in non-synchronised systems indicating that the problem remains even for very low activity M-dwarfs. Resolving this issue is vital not only for understanding the most populous stars in the Universe, but also for characterising their planetary companions, which hold the best prospects for finding Earth-like planets in the traditional habitable zone.
    06/2012;