Elice Carneiro Batista

Universidade Federal de São Paulo, San Paulo, São Paulo, Brazil

Are you Elice Carneiro Batista?

Claim your profile

Publications (4)13.9 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Fabry disease is a multisystem X-linked disorder resulting from α-galactosidase A (α-GalA) gene mutations leading to the accumulation of globotriaosylceramide mainly in endothelium compromising heart, kidney, and brain. In Fabry patients, progressive renal failure is frequently treated with angiotensin I-converting enzyme (ACE) inhibitors. We were interested in the possible interactions between ACE inhibitors therapy and the only causative therapy for Fabry disease, the enzyme replacement therapy (ERT) using recombinant human α-GalA (rhα-GalA). Our results suggest that ACE activity was significantly inhibited in plasma of Fabry patients and the blood pressure level decreased just after ERT (at the end of the rhα-GalA infusion). Interestingly, 2 weeks later, ACE activity was significantly upregulated and the plasma levels of angiotensin II increased in the patients treated with rhα-GalA following the elevations of ACE activity. The same inhibitory effect on ACE activity was also observed in rats after rhα-GalA infusion. Furthermore, ACE activity in CHO cells transfected with the human ACE was inhibited dose and time-dependently by rhα-GalA. In vitro, the incubation of plasma from healthy volunteers with rhα-GalA significantly reduced ACE activity. Finally, rhα-GalA also inhibited ACE activity and released galactose residues from purified rabbit lung ACE dose-dependently. In summary, our results suggest that rhα-GalA interacts with ACE and inhibits its activity, possibly by removing the galactose residues from the enzyme. This modulation might have profound impact on the clinical outcome of Fabry patients treated with rhα-GalA.
    Journal of Molecular Medicine 10/2010; 89(1):65-74. · 4.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Angiotensin I-converting enzyme (ACE), a common element of renin-angiotensin system (RAS) and kallikrein-kinin system (KKS), is involved in myelopoiesis modulation, mainly by cleaving the tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP). Based on this finding and in our results showing B1 and B2 kinin receptors expression in murine bone marrow (BM) cells, we evaluated the ACE influence on myelopoiesis of kinin B1 receptor knockout mice (B1KO) using long-term bone marrow cultures (LTBMCs). Captopril and AcSDKP were used as controls. Enhanced ACE activity, expressed by non-hematopoietic cells (Ter-199(-) and CD45(-)), was observed in B1KO LTBMCs when compared to wild-type (WT) cells. ACE hyperfunction in B1KO cells was maintained when LTBMCs from B1KO mice were treated with captopril (1.0microM) or AcSDKP (1.0nM). Although no alterations were observed in ACE mRNA and protein levels under these culture conditions, 3.0nM of AcSDKP increased ACE mRNA levels in WT LTBMCs. No alteration in the number of GM-CFC was seen in B1KO mice compared to WT animals, even when the former were treated with AcSDKP (10microg/kg) or captopril (100mg/kg) for 4 consecutive days. Hematological data also revealed no differences between WT and B1KO mice under basal conditions. When the animals received 4 doses of lipopolysaccharide (LPS), a decreased number of blood cells was detected in B1KO mice in relation to WT. We also found a decreased percentage of Gr1(+)/Mac-1(+), Ter119(+), B220(+), CD3(+), and Lin(-)Sca1(+)c-Kit(+) (LSK) cells in the BM of B1KO mice compared to WT animals. Low AcSDKP levels were observed in BM cultures from B1KO in comparison to WT cultures. We conclude that ACE hyperfunction in B1KO mice resulted in faster hydrolysis of AcSDKP peptide, which in turn decreased in BM tissues allowing HSC to enter the S stage of the cell cycle.
    Chemico-biological interactions 03/2010; 184(3):388-95. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Renin-angiotensin system is involved in homeostasis processes linked to renal and cardiovascular system and recently has been linked to metabolic syndrome. We analyzed the influence of long term angiotensin I converting enzyme (ACE) inhibitor enalapril treatment in normotensive adult Wistar rats fed with standard or palatable hyperlipidic diets. Our results show that long term enalapril treatment decreases absolute food intake, serum leptin concentration and body weight gain. Moreover, in adipose tissue, enalapril treatment led to decreased ACE activity, enhanced the expression of peroxisome proliferator activated receptor gamma, adiponectin, hormone-sensitive lipase, fatty acid synthase, catalase and superoxide dismutase resulting in prolonged life span. On the other hand, the ACE inhibitor was not able to improve the transport of leptin through the blood brain barrier or to alter the sensitivity of this hormone in the central nervous system. The effect of enalapril in decreasing body weight gain was also observed in older rats. In summary, these results extend our previous findings and corroborate data from the literature regarding the beneficial metabolic effects of enalapril and show for the first time that this ACE inhibitor prolongs life span in rats also fed with palatable hyperlipidic diet, an action probably correlated with adipose tissue metabolic modulation and body weight reduction.
    Biochemical pharmacology 07/2009; 78(8):951-8. · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Kallikrein-kinin system exerts cardioprotective effects against pathological hypertrophy. These effects are modulated mainly via B2 receptor activation. Chronic physical exercise can induce physiological cardiac hypertrophy characterized by normal organization of cardiac structure. Therefore, the aim of this work was to verify the influence of kinin B2 receptor deletion on physiological hypertrophy to exercise stimulus. Animals were submitted to swimming practice for 5 min or for 60 min, 5 days a week, during 1 month and several cardiac parameters were evaluated. Results showed no significantly difference in heart weight between both groups, however an increased left ventricle weight and myocyte diameter were observed after the 60 min swimming protocol, which was more pronounced in B2(-/-) mice. In addition, sedentary B2(-/-) animals presented higher left ventricle mass when compared to wild-type (WT) mice. An increase in capillary density was observed in exercised animals, however the effect was less pronounced in B2(-/-) mice. Collagen, a marker of pathological hypertrophy, was increased in B2(-/-) mice submitted to swimming protocol, as well as left ventricular thickness, suggesting that these animals do not respond with physiological hypertrophy for this kind of exercise. In conclusion, our data suggest an important role for the kinin B2 receptor in physiological cardiac hypertrophy.
    International Immunopharmacology 03/2008; 8(2):271-5. · 2.42 Impact Factor