Edith Balatkova

University of Bonn, Bonn, North Rhine-Westphalia, Germany

Are you Edith Balatkova?

Claim your profile

Publications (3)5.61 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Bis(ammonio)alkane compounds carrying lateral phthalimidopropyl substituents on the nitrogen atoms belong to the archetypal muscarinic allosteric agents. Herein, a series of symmetrical and nonsymmetrical compounds was synthesized in which the phthalimide residues were replaced by differently substituted imide moieties. The allosteric action was measured in porcine heart muscarinic M(2) receptors using [(3)H]N-methylscopolamine (NMS) as a ligand for the orthosteric receptor site in equilibrium binding and dissociation experiments. 1,8-Naphthalimido residues conferred an up to 100-fold gain in affinity leading into the low nanomolar range, while the inhibition of NMS binding was maintained. Additional propyl chain methylation was accompanied by an allosteric elevation of orthosteric ligand binding. In general, the gain in allosteric activity achieved by ring variation plus propyl chain methylation on one side of the molecule could not be augmented by symmetrical variations. The elevation of the ligand binding can be explained by different quantitative structure-activity relationships for the affinities to the free and the orthoster-liganded receptor.
    Journal of Medicinal Chemistry 04/2003; 46(6):1031-40. · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ligands for the allosteric site of acetylcholine M2 receptors are able to retard the dissociation of simultaneously bound ligands for the orthosteric site. This effect promotes receptor occupation by the orthosteric ligand. The allosteric effect opens various therapeutic perspectives, e.g., in organophosphorus poisoning. The aim of our studies was to optimize the affinity of the modulators for the common allosteric binding site of muscarinic M2 receptors, the orthosteric site of which was liganded with the N-methylscolopamine. The phthalimido substituted hexane-bisammonium compound W84 served as a starting point. Previous molecular modelling studies revealed two positive charges and two aromatic imides in a sandwich-like arrangement to be essential for a high allosteric potency. A three-dimensional quantitative structure activity relationship (3D QSAR) analysis predicted compounds with substituents of increasing size on the lateral imide moieties to enhance the affinity for the allosteric binding site. Thus, we synthesized and pharmacologically evaluated compounds bearing "saturated" phthalimide moieties as well as phthalimidines with substituents of systematically increasing size in position 3 or on the aromatic ring at one or both ends of the molecule. Within each series, QSAR could be derived: 1. "Saturation" of the aromatic ring of the phthalimide moiety results in less potent compounds. 2. Increasing the size of the substituents in position 3 of the phthalimide enhances the potency. 3. Putting substituents on the aromatic part of the phthalimide increases the potency more effectively: the introduction of a methyl group in position 5 gave a compound with a potency in the nanomolar concentration range which was subsequently developed as the first radioligand for the allosteric binding site.
    Pharmaceutica Acta Helvetiae 04/2000; 74(2-3):149-55.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ligands for the allosteric site of acetylcholine M2 receptors are able to retard the dissociation of simultaneously bound ligands for the orthosteric site. This effect promotes receptor occupation by the orthosteric ligand. The allosteric effect opens various therapeutic perspectives, e.g., in organophosphorus poisoning. The aim of our studies was to optimize the affinity of the modulators for the common allosteric binding site of muscarinic M2 receptors, the orthosteric site of which was liganded with the N-methylscolopamine. The phthalimido substituted hexane-bisammonium compound W84 served as a starting point. Previous molecular modelling studies revealed two positive charges and two aromatic imides in a sandwich-like arrangement to be essential for a high allosteric potency. A three-dimensional quantitative structure activity relationship (3D QSAR) analysis predicted compounds with substituents of increasing size on the lateral imide moieties to enhance the affinity for the allosteric binding site. Thus, we synthesized and pharmacologically evaluated compounds bearing “saturated” phthalimide moieties as well as phthalimidines with substituents of systematically increasing size in position 3 or on the aromatic ring at one or both ends of the molecule. Within each series, QSAR could be derived: 1. “Saturation” of the aromatic ring of the phthalimide moiety results in less potent compounds. 2. Increasing the size of the substituents in position 3 of the phthalimide enhances the potency. 3. Putting substituents on the aromatic part of the phthalimide increases the potency more effectively: the introduction of a methyl group in position 5 gave a compound with a potency in the nanomolar concentration range which was subsequently developed as the first radioligand for the allosteric binding site.
    Pharmacochemistry Library 01/2000; 31:149-155.