Dennis Liang Fei

University of Miami, Coral Gables, FL, United States

Are you Dennis Liang Fei?

Claim your profile

Publications (10)100.96 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Epidemiologic studies and animal models suggest that in utero arsenic exposure affects fetal health, with a negative association between maternal arsenic ingestion and infant birth weight often observed. However, the molecular mechanisms for this association remain elusive. In the present study, we aimed to increase our understanding of the impact of low-dose arsenic exposure on fetal health by identifying possible arsenic-associated fetal tissue biomarkers in a cohort of pregnant women exposed to arsenic at low levels. Arsenic concentrations were determined from the urine samples of a cohort of 133 pregnant women from New Hampshire. Placental tissue samples collected from enrollees were homogenized and profiled for gene expression across a panel of candidate genes, including known arsenic regulated targets and genes involved in arsenic transport, metabolism, or disease susceptibility. Multivariable adjusted linear regression models were used to examine the relationship of candidate gene expression with arsenic exposure or with birth weight of the baby. Placental expression of the arsenic transporter AQP9 was positively associated with maternal urinary arsenic levels during pregnancy (coefficient estimate: 0.25; 95% confidence interval: 0.05 -- 0.45). Placental expression of AQP9 related to expression of the phospholipase ENPP2 which was positively associated with infant birth weight (coefficient estimate: 0.28; 95% CI: 0.09 -- 0.47). A structural equation model indicated that these genes may mediate arsenic's effect on infant birth weight (coefficient estimate: -0.009; 95% confidence interval: -0.032 -- -0.001; 10,000 replications for bootstrapping). We identified the expression of AQP9 as a potential fetal biomarker for arsenic exposure. Further, we identified a positive association between the placental expression of phospholipase ENPP2 and infant birth weight. These findings suggest a path by which arsenic may affect birth outcomes.
    Environmental Health 07/2013; 12(1):58. · 2.71 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The G0/G1 switch gene 2 (G0S2) is rapidly induced by all-trans-retinoic acid (RA)-treatment of acute promyelocytic leukemia (APL) and other cells. G0S2 regulates lipolysis via inhibition of adipose triglyceride lipase (ATGL). This study found that retinoic acid receptor (RAR), but not retinoid X receptor (RXR) agonists induced G0S2 expression in APL cells. Novel G0S2 functions were uncovered that included repression of exogenous gene expression and transcriptional activity. Transient G0S2 transfection repressed the activities of multiple reporter constructs (including the retinoid-regulated species RARĪ², UBE1L and G0S2); this occurred in diverse cell contexts. This inhibition was antagonized by siRNA-mediated G0S2 knockdown. To determine the inhibitory effects were not due to transient G0S2 expression, G0S2 was stably overexpressed in cells without appreciable basal G0S2 expression. As expected, this repressed transcriptional activities. Intriguingly, transfection of G0S2 did not affect endogenous RARĪ², UBE1L or G0S2 expression. Hence, only exogenously expressed genes were affected by G0S2. The domain responsible for this repression was localized to the G0S2 hydrophobic domain (HD). This was the same region responsible for the ability of G0S2 to inhibit ATGL activity. Whether an interaction with ATGL accounted for this new G0S2 activity was studied. Mimicking the inhibition of ATGL by oleic acid treatment that increased lipid droplet size or ATGL siRNA knockdown did not recapitulate G0S2 repressive effects. Engineered gain of ATGL expression did not rescue G0S2 transcriptional repression either. Thus, transcriptional repression by G0S2 did not depend on the ability of G0S2 to inhibit ATGL. Subcellular localization studies revealed that endogenous and exogenously-expressed G0S2 proteins were localized to the cytoplasm, particularly in the perinuclear region. Expression of a mutant G0S2 species that lacked the HD domain altered cytosolic G0S2 localization. This linked G0S2 subcellular localization to G0S2 transcriptional repression. The potential mechanisms responsible for this G0S2 repression are examined.
    International Journal of Oncology 03/2013; · 2.66 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The role of Hedgehog (HH) signaling in bladder cancer remains controversial. The gene encoding the HH receptor and negative regulator PATCHED1 (PTCH1) resides on a region of chromosome 9q, one copy of which is frequently lost in bladder cancer. Inconsistent with PTCH1 functioning as a classic tumor suppressor gene, loss-of-function mutations in the remaining copy of PTCH1 are not commonly found. Here, we provide direct evidence for a critical role of HH signaling in bladder carcinogenesis. We show that transformed human urothelial cells and many urothelial carcinoma cell lines exhibit constitutive HH signaling, which is required for their growth and tumorigenic properties. Surprisingly, rather than originating from loss of PTCH1, the constitutive HH activity observed in urothelial carcinoma cell lines was HH ligand dependent. Consistent with this finding, increased levels of HH and the HH target gene product GLI1 were found in resected human primary bladder tumors. Furthermore, on the basis of the difference in intrinsic HH dependence of urothelial carcinoma cell lines, a gene expression signature was identified that correlated with bladder cancer progression. Our findings therefore indicate that therapeutic targeting of the HH signaling pathway may be beneficial in the clinical management of bladder cancer.
    Cancer Research 07/2012; 72(17):4449-58. · 8.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Considerable interest has been generated from the results of recent clinical trials using smoothened (SMO) antagonists to inhibit the growth of hedgehog (HH) signaling-dependent tumors. This interest is tempered by the discovery of SMO mutations mediating resistance, underscoring the rationale for developing therapeutic strategies that interrupt HH signaling at levels distinct from those inhibiting SMO function. Here, we demonstrate that HH-dependent non-small cell lung carcinoma (NSCLC) growth is sensitive to blockade of the HH pathway upstream of SMO, at the level of HH ligand processing. Individually, the use of different lentivirally delivered shRNA constructs targeting two functionally distinct HH-processing proteins, skinny hedgehog (SKN) or dispatched-1 (DISP-1), in NSCLC cell lines produced similar decreases in cell proliferation and increased cell death. Further, providing either an exogenous source of processed HH or a SMO agonist reverses these effects. The attenuation of HH processing, by knocking down either of these gene products, also abrogated tumor growth in mouse xenografts. Finally, we extended these findings to primary clinical specimens, showing that SKN is frequently overexpressed in NSCLC and that higher DISP-1 expression is associated with an unfavorable clinical outcome. Our results show a critical role for HH processing in HH-dependent tumors, identifies two potential druggable targets in the HH pathway, and suggest that similar therapeutic strategies could be explored to treat patients harboring HH ligand-dependent cancers.Oncogene advance online publication, 25 June 2012; doi:10.1038/onc.2012.243.
    Oncogene 06/2012; · 7.36 Impact Factor
  • David J Robbins, Dennis Liang Fei, Natalia A Riobo
    [show abstract] [hide abstract]
    ABSTRACT: Hedgehog (Hh) proteins regulate the development of a wide range of metazoan embryonic and adult structures, and disruption of Hh signaling pathways results in various human diseases. Here, we provide a comprehensive review of the signaling pathways regulated by Hh, consolidating data from a diverse array of organisms in a variety of scientific disciplines. Similar to the elucidation of many other signaling pathways, our knowledge of Hh signaling developed in a sequential manner centered on its earliest discoveries. Thus, our knowledge of Hh signaling has for the most part focused on elucidating the mechanism by which Hh regulates the Gli family of transcription factors, the so-called "canonical" Hh signaling pathway. However, in the past few years, numerous studies have shown that Hh proteins can also signal through Gli-independent mechanisms collectively referred to as "noncanonical" signaling pathways. Noncanonical Hh signaling is itself subdivided into two distinct signaling modules: (i) those not requiring Smoothened (Smo) and (ii) those downstream of Smo that do not require Gli transcription factors. Thus, Hh signaling is now proposed to occur through a variety of distinct context-dependent signaling modules that have the ability to crosstalk with one another to form an interacting, dynamic Hh signaling network.
    Science Signaling 01/2012; 5(246):re6. · 7.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: A number of Smoothened (SMO) pathway antagonists are currently undergoing clinical trials as anticancer agents. These drugs are proposed to attenuate tumor growth solely through inhibition of Hedgehog (HH), which is produced in tumor cells but acts on tumor stromal cells. The pivotal argument underlying this model is that the growth-inhibitory properties of SMO antagonists on HH-producing cancer cells are due to their off-target effects. Here, we show that the tumorigenic properties of such lung cancer cells depend on their intrinsic level of HH activity. Notably, reducing HH signaling in these tumor cells decreases HH target gene expression. Taken together, these results question the dogma that autocrine HH signaling plays no role in HH-dependent cancers, and does so without using SMO antagonists.
    Cancer Research 05/2011; 71(13):4454-63. · 8.65 Impact Factor
  • Protein & Cell 05/2010; 1(5):417-8. · 3.22 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Exposure to the environmental toxicant arsenic, through both contaminated water and food, contributes to significant health problems worldwide. In particular, arsenic exposure is thought to function as a carcinogen for lung, skin, and bladder cancer via mechanisms that remain largely unknown. More recently, the Hedgehog signaling pathway has also been implicated in the progression and maintenance of these same cancers. Based on these similarities, we tested the hypothesis that arsenic may act in part through activating Hedgehog signaling. Here, we show that arsenic is able to activate Hedgehog signaling in several primary and established tissue culture cells as well as in vivo. Arsenic activates Hedgehog signaling by decreasing the stability of the repressor form of GLI3, one of the transcription factors that ultimately regulate Hedgehog activity. We also show, using tumor samples from a cohort of bladder cancer patients, that high levels of arsenic exposure are associated with high levels of Hedgehog activity. Given the important role Hedgehog signaling plays in the maintenance and progression of a variety of tumors, including bladder cancer, these results suggest that arsenic exposure may in part promote cancer through the activation of Hedgehog signaling. Thus, we provide an important insight into the etiology of arsenic-induced human carcinogenesis, which may be relevant to millions of people exposed to high levels of arsenic worldwide.
    Cancer Research 02/2010; 70(5):1981-8. · 8.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The hedgehog (Hh) signalling pathway has an evolutionarily conserved role in patterning fields of cells during metazoan development, and is inappropriately activated in cancer. Hh pathway activity is absolutely dependent on signalling by the seven-transmembrane protein smoothened (Smo), which is regulated by the Hh receptor patched (Ptc). Smo signals to an intracellular multi-protein complex containing the Kinesin related protein Costal2 (Cos2), the protein kinase Fused (Fu) and the transcription factor Cubitus interruptus (Ci). In the absence of Hh, this complex regulates the cleavage of full-length Ci to a truncated repressor protein, Ci75, in a process that is dependent on the proteasome and priming phosphorylations by Protein kinase A (PKA). Binding of Hh to Ptc blocks Ptc-mediated Smo inhibition, allowing Smo to signal to the intracellular components to attenuate Ci cleavage. Because of its homology with the Frizzled family of G-protein-coupled receptors (GPCR), a likely candidate for an immediate Smo effector would be a heterotrimeric G protein. However, the role that G proteins may have in Hh signal transduction is unclear and quite controversial, which has led to widespread speculation that Smo signals through a variety of novel G-protein-independent mechanisms. Here we present in vitro and in vivo evidence in Drosophila that Smo activates a G protein to modulate intracellular cyclic AMP levels in response to Hh. Our results demonstrate that Smo functions as a canonical GPCR, which signals through Galphai to regulate Hh pathway activation.
    Nature 12/2008; 456(7224):967-70. · 38.60 Impact Factor
  • Gastroenterology 01/2008; 134(4). · 12.82 Impact Factor

Publication Stats

117 Citations
20 Downloads
664 Views
100.96 Total Impact Points

Institutions

  • 2011
    • University of Miami
      • Department of Biochemistry and Molecular Biology
      Coral Gables, FL, United States
  • 2008–2010
    • Dartmouth Medical School
      • Department of Pharmacology and Toxicology
      Hanover, NH, United States