Danielle Spoor

Université de Montréal, Montréal, Quebec, Canada

Are you Danielle Spoor?

Claim your profile

Publications (5)6.14 Total impact

  • A Cuerrier · C Leduc · D Spoor · LC Martineau · PS Haddad ·

    Focus on Alternative and Complementary Therapies 03/2010; 9:14-14. DOI:10.1111/j.2042-7166.2004.tb04508.x

  • Focus on Alternative and Complementary Therapies 03/2010; 10:24-24. DOI:10.1111/j.2042-7166.2005.tb00483.x
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The seeds of Nigella sativa. L. (NS), a plant of the Runanculaceae family, are used in traditional medicine in North Africa and the Middle East for the treatment of diabetes. Despite widespread use and a number of scientific studies, the target tissues and cellular mechanisms of action of this plant product are not well understood. This study evaluated the effects of NS seed crude ethanol extract on insulin secretion in INS832/13 and β TC-tet lines of pancreatic β-cells and on glucose disposal by C2C12 skeletal muscle cells and 3T3-L1 adipocytes. An 18-h treatment with NS amplified glucose-stimulated insulin secretion by more than 35% without affecting sensitivity to glucose. NS treatment also accelerated β-cell proliferation. An 18-h treatment with NS increased basal glucose uptake by 55% (equivalent to approximately two-fold the effect of 100 nM insulin) in muscle cells and approximately by 400% (equal to the effect of 100 nM insulin) in adipocytes; this effect was perfectly additive to that of insulin in adipocytes. Finally, NS treatment of pre-adipocytes undergoing differentiation accelerated triglyceride accumulation comparably with treatment with 10 μ M rosiglitazone. It is concluded that the well-documented in vivo. antihyperglycemic effects of NS seed extract are attributable to a combination of therapeutically relevant insulinotropic and insulin-like properties.
    Pharmaceutical Biology 10/2008; 46(1-2):96-104. DOI:10.1080/13880200701734810 · 1.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Incidence of type II diabetes is rapidly increasing worldwide. In order to identify complementary or alternative approaches to existing medications, we studied anti-diabetic properties of Vaccinium angustifolium Ait., a natural health product recommended for diabetes treatment in Canada. Ethanol extracts of root, stem, leaf, and fruit were tested at 12.5 microg/ml for anti-diabetic activity in peripheral tissues and pancreatic beta cells using a variety of cell-based bioassays. Specifically, we assessed: (1) deoxyglucose uptake in differentiated C2C12 muscle cells and 3T3-L1 adipocytes; (2) glucose-stimulated insulin secretion (GSIS) in beta TC-tet pancreatic beta cells; (3) beta cell proliferation in beta TC-tet cells; (4) lipid accumulation in differentiating 3T3-L1 cells; (5) protection against glucose toxicity in PC12 cells. Root, stem, and leaf extracts significantly enhanced glucose transport in C2C12 cells by 15-25% in presence and absence of insulin after 20 h of incubation; no enhancement resulted from a 1 h exposure. In 3T3 cells, only the root and stem extracts enhanced uptake, and this effect was greater after 1 h than after 20 h; uptake was increased by up to 75% in absence of insulin. GSIS was potentiated by a small amount in growth-arrested beta TC-tet cells incubated overnight with leaf or stem extract. However, fruit extracts were found to increase 3H-thymidine incorporation in replicating beta TC-tet cells by 2.8-fold. Lipid accumulation in differentiating 3T3-L1 cells was accelerated by root, stem, and leaf extracts by as much as 6.5-fold by the end of a 6-day period. Stem, leaf, and fruit extracts reduced apoptosis by 20-33% in PC12 cells exposed to elevated glucose for 96 h. These results demonstrate that V. angustifolium contains active principles with insulin-like and glitazone-like properties, while conferring protection against glucose toxicity. Enhancement of proliferation in beta cells may represent another potential anti-diabetic property. Extracts of the Canadian blueberry thus show promise for use as a complementary anti-diabetic therapy.
    Phytomedicine 12/2006; 13(9-10):612-23. DOI:10.1016/j.phymed.2006.08.005 · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type II diabetes is a major health problem worldwide. Some populations, such as aboriginal peoples, are particularly at risk for this disease. In the Cree Nation of Quebec, Canada, prevalence in adults is approaching 20%, and the consequences are compounded by low compliance with modern medicine. In 2003, we conducted an ethnobotanical study of Cree medicinal plants used for the treatment of symptoms of diabetes. This served as the basis for a project designed to identify efficacious complementary treatment options more readily accepted by this population. The present study assesses the in vitro anti-diabetic potential of extracts from the 8 most promising plants to emerge from the ethnobotanical study. Cell-based bioassays were employed to screen for (i) potentiation of glucose uptake by skeletal muscle cells (C2C12) and adipocytes (3T3-L1); (ii) potentiation of glucose-stimulated insulin secretion (GSIS) and insulin production by pancreatic beta cells (INS 832/13); (iii) potentiation of triglyceride accumulation in differentiating 3T3-L1 cells; (iv) protection against glucose toxicity and glucose deprivation in pre-sympathetic neurons (PC12-AC). Additionally, anti-oxidant activity was measured biochemically by the diphenylpicrylhydrazyl (DPPH) reduction assay. All plant extracts potentiated basal or insulin-stimulated glucose uptake to some degree in muscle cells or adipocytes. Adipocyte differentiation was accelerated by 4 extracts. Five extracts conferred protection in PC12 cells. Three extracts displayed free radical scavenging activity similar to known anti-oxidants. None of the plant extracts enhanced GSIS or insulin content in INS 832/13 beta cells. It is concluded that the Cree pharmacopoeia contains several plants with significant anti-diabetic potential.
    Canadian Journal of Physiology and Pharmacology 08/2006; 84(8-9):847-58. DOI:10.1139/y06-018 · 1.77 Impact Factor