C J Paige

University Health Network, Toronto, Ontario, Canada

Are you C J Paige?

Claim your profile

Publications (146)1170.26 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Inciting the cellular arm of adaptive immunity has been the fundamental goal of cancer immunotherapy strategies, specifically focusing on inducing tumour antigen-specific responses by CD8+ cytotoxic T lymphocytes (CTLs). However, there is an emerging appreciation that the cytotoxic function of CD4+ T cells can be effective in a clinical setting. Harnessing this potential will require an understanding of how such cells arise. In this study we use an IL-12 transduced variant of the 70Z/3 leukemia cell line in a B6D2F1 (BDF1) murine model system to reveal a novel cascade of cells and soluble factors that activate anti-cancer CD4+ killer cells. We show that natural killer T (NKT) cells play a pivotal role by activating dendritic cells (DCs) in a contact-dependent manner; soluble products of this interaction, including MCP-1, propagate the activation signal culminating in development of CD4+CTL that directly mediate an anti-leukemia response while also orchestrating a multi-pronged attack by other effector cells. A more complete picture of the conditions that induce such a robust response will allow us to capitalize on CD4+ T cell plasticity for maximum therapeutic effect.
    Cancer immunology research. 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation has a critical role in the development of insulin resistance. Recent evidence points to a contribution by the central nervous system in the modulation of peripheral inflammation through the anti-inflammatory reflex. However, the importance of this phenomenon remains elusive in type 2 diabetes pathogenesis. Here we show that rat insulin-2 promoter (Rip)-mediated deletion of Pten, a gene encoding a negative regulator of PI3K signaling, led to activation of the cholinergic anti-inflammatory pathway that is mediated by M2 activated macrophages in peripheral tissues. As such, Rip-cre(+) Pten(flox/flox) mice showed lower systemic inflammation and greater insulin sensitivity under basal conditions compared to littermate controls, which were abolished when the mice were treated with an acetylcholine receptor antagonist or when macrophages were depleted. After feeding with a high-fat diet, the Pten-deleted mice remained markedly insulin sensitive, which correlated with massive subcutaneous fat expansion. They also exhibited more adipogenesis with M2 macrophage infiltration, both of which were abolished after disruption of the anti-inflammatory efferent pathway by left vagotomy. In summary, we show that Pten expression in Rip(+) neurons has a critical role in diabetes pathogenesis through mediating the anti-inflammatory reflex.
    Nature medicine 04/2014; · 27.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The function of the neurokinin 1 (NK1) receptor was investigated in the DSS-induced mouse colitis model using NK1 receptor-deficient mice and the selective antagonist netupitant. Colitis was induced by oral administration of 20 mg/ml DSS solution for 7 days in C57BL/6 and Tacr1 KO animals (n = 5-7). During the induction, one-half of the C57BL/6 and Tacr1 KO group received one daily dose of 6 mg/kg netupitant, administered intraperitoneally, the other half of the group received saline, respectively. Disease activity index (DAI), on the basis of stool consistency, blood and weight loss, was determined over 7 days. Histological evaluation, myeloperoxidase (MPO) measurement, cytokine concentrations and receptor expression analysis were performed on the colon samples. NK1 receptors are up-regulated in the colon in response to DSS treatment. DSS increased DAI, histopathological scores, BLC, sICAM-1, IFN-γ, IL-16 and JE in wildtype mice, which were significantly reduced in NK1 receptor-deficient ones. NK1 receptor antagonism with netupitant significantly diminished DAI, inflammatory histopathological alterations, BLC, IFN-γ, IL-13 and IL-16 in wildtype mice, but not in the NK1-deficient ones. MPO was similarly elevated and netupitant significantly decreased its activity in both groups. NK1 receptor antagonism could be beneficial for colitis via inhibiting different inflammatory mechanisms.
    Agents and Actions 01/2014; · 1.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin (IL)-12 is the key cytokine in the initiation of a Th1 response and has shown promise as an anti-cancer agent; however, clinical trials involving IL-12 have been unsuccessful due to toxic side-effects. To address this issue, lentiviral vectors were used to transduce tumour cell lines that were injected as an autologous tumour cell vaccine. The focus of the current study was to test the efficacy of this approach in a solid tumour model. SCCVII cells that were transduced to produce IL-12 at different concentrations were then isolated. Subcutaneous injection of parental SCCVII cells results in tumour development, while a mixture of IL-12-producing and non-producing cells results in tumour clearance. Interestingly, when comparing mice injected a mixture of SCCVII and either high IL-12-producing tumour cells or low IL-12-producing tumour cells, we observed that mixtures containing small amounts of high producing cells lead to tumour clearance, whereas mixtures containing large amounts of low producing cells fail to elicit protection, despite the production of equal amounts of total IL-12 in both mixtures. Furthermore, immunizing mice with IL-12-producing cells leads to the establishment of both local and systemic immunity against challenge with SCCVII. Using depletion antibodies, it was shown that both CD4(+) and CD8(+) cells are crucial for therapy. Lastly, we have established cell clones of other solid tumour cell lines (RM-1, LLC1 and moto1.1) that produce IL-12. Our results show that the delivery of IL-12 by cancer cells is an effective route for immune activation.
    Journal of Cellular and Molecular Medicine 11/2013; · 4.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factor GATA-3 is expressed and required for differentiation and function throughout the T lymphocyte lineage. Despite evidence it may also be expressed in multipotent hematopoietic stem cells (HSCs), any role for GATA-3 in these cells has remained unclear. Here we found GATA-3 was in the cytoplasm in quiescent long-term stem cells from steady-state bone marrow but relocated to the nucleus when HSCs cycled. Relocation depended on signaling via the mitogen-activated protein kinase p38 and was associated with a diminished capacity for long-term reconstitution after transfer into irradiated mice. Deletion of Gata3 enhanced the repopulating capacity and augmented the self-renewal of long-term HSCs in cell-autonomous fashion without affecting the cell cycle. Our observations position GATA-3 as a regulator of the balance between self-renewal and differentiation in HSCs that acts downstream of the p38 signaling pathway.
    Nature Immunology 08/2013; · 26.20 Impact Factor
  • Molecular Genetics and Metabolism 02/2013; 108(2):S36. · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tachykinins are a large group of neuropeptides with both central and peripheral activity. Despite the increasing number of studies reporting a growth supportive effect of tachykinin peptides in various in vitro stem cell systems, it remains unclear whether these findings are applicable in vivo. To determine how neurokinin-1 receptor (NK-1R) deficient hematopoietic stem cells would behave in a normal in vivo environment, we tested their reconstitution efficiency using competitive bone marrow repopulation assays. We show here that bone marrow taken from NK-1R deficient mice (Tacr1(-/-)) showed lineage specific B and T cell engraftment deficits compared to wild-type competitor bone marrow cells, providing evidence for an involvement of NK-1R signalling in adult hematopoiesis. Tachykinin knockout mice lacking the peptides SP and/or HK-1 (Tac1 (-/-), Tac4 (-/-) and Tac1 (-/-)/Tac4 (-/-) mice) repopulated a lethally irradiated wild-type host with similar efficiency as competing wild-type bone marrow. The difference between peptide and receptor deficient mice indicates a paracrine and/or endocrine mechanism of action rather than autocrine signalling, as tachykinin peptides are supplied by the host environment.
    PLoS ONE 01/2013; 8(3):e58787. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Substance P, encoded by the Tac1 gene, is involved in neurogenic inflammation and hyperalgesia via neurokinin 1 (NK1) receptor activation. Its non-neuronal counterpart, hemokinin-1, which is derived from the Tac4 gene, is also a potent NK1 agonist. Although hemokinin-1 has been described as a tachykinin of distinct origin and function compared to SP, its role in inflammatory and pain processes has not yet been elucidated in such detail. In this study, we analysed the involvement of tachykinins derived from the Tac1 and Tac4 genes, as well as the NK1 receptor in chronic arthritis of the mouse. Complete Freund's Adjuvant was injected intraplantarly and into the tail of Tac1(-/-), Tac4(-/-), Tacr1(-/-) (NK1 receptor deficient) and Tac1(-/-/)Tac4(-/-) mice. Paw volume was measured by plethysmometry and mechanosensitivity using dynamic plantar aesthesiometry over a time period of 21 days. Semiquantitative histopathological scoring and ELISA measurement of IL-1β concentrations of the tibiotarsal joints were performed. Mechanical hyperalgesia was significantly reduced from day 11 in Tac4(-/-) and Tacr1(-/-) animals, while paw swelling was not altered in any strain. Inflammatory histopathological alterations (synovial swelling, leukocyte infiltration, cartilage destruction, bone damage) and IL-1β concentration in the joint homogenates were significantly smaller in Tac4(-/-) and Tac1(-/-/)Tac4(-/-) mice. Hemokinin-1, but not substance P increases inflammation and hyperalgesia in the late phase of adjuvant-induced arthritis. While NK1 receptors mediate its antihyperalgesic actions, the involvement of another receptor in histopathological changes and IL-1β production is suggested.
    PLoS ONE 01/2013; 8(4):e61684. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies in mice with targeted deletions of tachykinin genes suggest that tachykinins and their receptors influence emotional behaviors such as aggression, depression and anxiety. Here, we investigated whether TAC1- and TAC4-encoded peptides (substance P and hemokinin-1, respectively) and the neurokinin-1 receptor (NK-1R) are involved in the modulation of sexual behaviors. Male mice deficient for the NK-1R (TACR1 (-/-)) exhibited decreased exploration of female urine in contrast to C57BL/6 control mice and mice deficient for NK-1R ligands such as TAC1 (-/-), TAC4 (-/-) and the newly generated TAC1 (-/-) /TAC4 (-/-) mice. In comparison to C57BL/6 mice, mounting frequency and duration were decreased in male TACR1 (-/-) mice, while mounting latency was increased. Decreased preference for sexual pheromones was also seen in female TACR1 (-/-) mice. Furthermore, administration of the NK-1R-antagonist L-703,606 decreased investigation of female urine by male C57BL/6 mice, suggesting an involvement of NK-1R in urine sniffing behavior. Our results provide evidence for the NK-1R in facilitating sexual approach behavior, as male TACR1 (-/-) mice exhibited blunted approach behavior toward females following the initial interaction compared with C57BL/6 mice. NK-1R signaling may therefore play an important role in pheromone-induced sexual behavior.
    Genes Brain and Behavior 04/2012; 11(5):568-76. · 3.60 Impact Factor
  • Steven A Corfe, Christopher J Paige
    [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin-7 (IL-7) plays several important roles during B cell development including aiding in; the specification and commitment of cells to the B lineage, the proliferation and survival of B cell progenitors; and maturation during the pro-B to pre-B cell transition. Regulation and modulation of IL-7 receptor (IL-7R) signaling is critical during B lymphopoiesis, because excessive or deficient IL-7R signaling leads to abnormal or inhibited B cell development. IL-7 works together with E2A, EBF, Pax-5 and other transcription factors to regulate B cell commitment, while also functions to regulate Ig rearrangement by modulating FoxO protein activation and Rag enhancer activity. Suppressor of cytokine signaling (SOCS) proteins are inhibitors of cytokine activation and, in B cells, function to fine tune IL-7R signaling; ensuring that appropriate IL-7 signals are transmitted to allow for efficient B cell commitment and development.
    Seminars in Immunology 03/2012; 24(3):198-208. · 5.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The homeodomain-interacting protein kinase (HIPK) family is comprised of four highly related serine/threonine kinases originally identified as co-repressors for various homeodomain-containing transcription factors. The HIPKs have been shown to be involved in growth regulation and apoptosis, with numerous studies highlighting HIPK regulation of the tumor suppressor p53. In this study, we have discovered a B cell homeostatic defect in HIPK1-deficient (HIPK1(-/-)) mice. Lymphopoietic populations within the thymus and bone marrow of HIPK1(-/-) mice appeared normal based upon FACS analysis; however, the spleen exhibited a reduced number of total B cells with a significant loss of transitional-1 and follicular B cell populations. Interestingly, the marginal zone B cell population was expanded in HIPK1(-/-) mice, yielding an increased frequency of these cells. HIPK1(-/-) B cells exhibited impaired cell division in response to B cell receptor cross-linking in vitro based upon thymidine incorporation or CFSE dilution; however, the addition of CD40L rescued HIPK1(-/-) proliferation to wild-type levels. Despite the expanded MZ B cell population in the HIPK1(-/-) mice, the T-independent type 2 humoral response was impaired. These data identify HIPK1 as a novel kinase required for optimal B cell function in mice.
    PLoS ONE 01/2012; 7(4):e35533. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The largest mucosal surface in the body is in the gastrointestinal tract, a location that is heavily colonized by microbes that are normally harmless. A key mechanism required for maintaining a homeostatic balance between this microbial burden and the lymphocytes that densely populate the gastrointestinal tract is the production and transepithelial transport of poly-reactive IgA (ref. 1). Within the mucosal tissues, B cells respond to cytokines, sometimes in the absence of T-cell help, undergo class switch recombination of their immunoglobulin receptor to IgA, and differentiate to become plasma cells. However, IgA-secreting plasma cells probably have additional attributes that are needed for coping with the tremendous bacterial load in the gastrointestinal tract. Here we report that mouse IgA(+) plasma cells also produce the antimicrobial mediators tumour-necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS), and express many molecules that are commonly associated with monocyte/granulocytic cell types. The development of iNOS-producing IgA(+) plasma cells can be recapitulated in vitro in the presence of gut stroma, and the acquisition of this multifunctional phenotype in vivo and in vitro relies on microbial co-stimulation. Deletion of TNF-α and iNOS in B-lineage cells resulted in a reduction in IgA production, altered diversification of the gut microbiota and poor clearance of a gut-tropic pathogen. These findings reveal a novel adaptation to maintaining homeostasis in the gut, and extend the repertoire of protective responses exhibited by some B-lineage cells.
    Nature 12/2011; 481(7380):199-203. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the 2009 H1N1 influenza virus pandemic (pdmH1N1) outbreak, it was found that most individuals lacked antibodies against the new pdmH1N1 virus, and only the elderly showed anti-hemagglutinin (anti-HA) antibodies that were cross-reactive with the new strains. Different studies have demonstrated that prior contact with the virus can confer protection against strains with some degree of dissimilarity; however, this has not been sufficiently explored within the context of a pdmH1N1 virus infection. In this study, we have found that a first infection with the A/Brisbane/59/2007 virus strain confers heterologous protection in ferrets and mice against a subsequent pdmH1N1 (A/Mexico/4108/2009) virus infection through a cross-reactive but non-neutralizing antibody mechanism. Heterologous immunity is abrogated in B cell-deficient mice but maintained in CD8(-/-) and perforin-1(-/-) mice. We identified cross-reactive antibodies from A/Brisbane/59/2007 sera that recognize non-HA epitopes in pdmH1N1 virus. Passive serum transfer showed that cross-reactive sH1N1-induced antibodies conferred protection in naive recipient mice during pdmH1N1 virus challenge. The presence or absence of anti-HA antibodies, therefore, is not the sole indicator of the effectiveness of protective cross-reactive antibody immunity. Measurement of additional antibody repertoires targeting the non-HA antigens of influenza virus should be taken into consideration in assessing protection and immunization strategies. We propose that preexisting cross-protective non-HA antibody immunity may have had an overall protective effect during the 2009 pdmH1N1 outbreak, thereby reducing disease severity in human infections.
    Journal of Virology 11/2011; 86(4):2229-38. · 5.08 Impact Factor
  • Source
    Steven A Corfe, Robert Rottapel, Christopher J Paige
    [Show abstract] [Hide abstract]
    ABSTRACT: During B lymphopoiesis, IL-7 induces survival, proliferation, and differentiation signals that are important during the pro-B to pre-B cell transition. We showed that murine small pre-B stage cells do not signal or proliferate in response to IL-7, yet they maintain IL-7R surface expression. Loss of proliferative responsiveness to IL-7 is mediated by suppressor of cytokine signaling protein 1 (SOCS-1), the expression of which is regulated during B lymphopoiesis, with the highest levels observed in small pre-B cells. SOCS-1 inhibits IL-7 responses in pre-B cell lines and ex vivo B lineage cells. SOCS-1 expression and, thus, responsiveness to IL-7, can be regulated by IL-7 itself, as well as IFN-γ and IL-21. Additionally, the transcriptional repressor Gfi-1b enhances the proliferative responsiveness of B cell lines to IL-7. We demonstrated that these molecules act together to form a SOCS-mediated "rheostat" that controls the level of IL-7R signaling in developing murine B lineage cells.
    The Journal of Immunology 08/2011; 187(7):3499-510. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fluorinated nucleosides and nucleotides are of considerable interest to medicinal chemists because of their antiviral, anticancer, and other biological activities. However, their direct interactions at target binding sites are not well understood. A new class of 2'-deoxy-2'-fluoro-C6-substituted uridine and UMP derivatives were synthesized and evaluated as inhibitors of orotidine 5'-monophosphate decarboxylase (ODCase or OMPDCase). These compounds were synthesized from the key intermediate, fully protected 2'-deoxy-2'-fluorouridine. Among the synthesized compounds, 2'-deoxy-2'-fluoro-6-iodo-UMP covalently inhibited human ODCase with a second-order rate constant of 0.62 ± 0.02 M(-1) s(-1). Interestingly, the 6-cyano-2'-fluoro derivative covalently interacted with ODCase defying the conventional thinking, where its ribosyl derivative undergoes transformation into BMP by ODCase. This confirms that the 2'-fluoro moiety influences the chemistry at the C6 position of the nucleotides and thus interactions in the active site of ODCase. Molecular interactions of the 2'-fluorinated nucleotides are compared to those with the 3'-fluorinated nucleotides bound to the corresponding target enzyme, and the carbohydrate moieties were shown to bind in different conformations.
    Journal of Medicinal Chemistry 03/2011; 54(8):2891-901. · 5.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IL-21 plays a key role in the late stage of B cell development, where it has been shown to induce growth and differentiation of mature B cells into Ig-secreting plasma cells. Because IL-21R has also been reported on bone marrow (BM) B cell progenitors, we investigated whether IL-21R influenced earlier stages of B cell development. IL-21R is functional as early as the pro-B cell stage, and the strength of receptor-mediated signaling increases as cells mature. The addition of IL-21 to B cell progenitors in cell culture resulted in the accelerated appearance of mature B cell markers and was associated with the induction of Aid, Blimp1, and germline transcripts. We also found that stimulation of both IL-21R and CD40 was sufficient to induce the maturation of early B cell progenitors into IgM- and IgG-secreting cells. Consistent with a role for IL-21 in promoting B cell differentiation, the number of B220(+)CD43(+)IgM(-) pro-B cells was increased, and the number of mature IgM(hi)IgD(hi) cells was decreased in BM of IL-21R-deficient mice. We also report in this paper that IL-21 is expressed by BM CD4(+) T cells. These results provide evidence that IL-21R is functional in B cell progenitors and indicate that IL-21 regulates B cell development.
    The Journal of Immunology 03/2011; 186(9):5244-53. · 5.52 Impact Factor
  • Megan Nelles, Vincenzo Salerno, Yixin Xu, Christopher J. Paige
    [Show abstract] [Hide abstract]
    ABSTRACT: The immune system protects the body not only from invasion by foreign infectious agents but also from abnormal self-cells with the capacity to cause disease. Several lines of evidence suggest that the immune system can effectively rid the body of cells with malignant potential under normal physiologic conditions and tumor development results from a failure of the immune system. There are also rare cases of spontaneous regression of an established tumor, suggesting that the immune system can regain control if stimulated in the appropriate manner, despite the potentially immunosuppressive nature of the tumor microenvironment. Therapeutic manipulation of the cytokine balance may be such an appropriate stimulation. Cytokines are key immunomodulatory agents that shape responses by the immune system and, conversely, are also involved in the suppression of a response. By manipulating the cytokine milieu, endogenous protection may be reestablished or even enhanced. It is therefore no surprise that cytokine immunotherapy holds great theoretical promise for the treatment of cancer. This theoretical promise has been borne out in a wide variety of preclinical models but unfortunately, clinical trials have to date failed to recapitulate these results. In this chapter, we discuss the activities of the more promising cytokines as monotherapies, multiple cytokine therapies or paired with other treatment modalities. Our growing understanding of each cytokine alone and within the complex microenvironment of the tumor will lead to the refinement of protocols and improve their therapeutic efficacy. We present the outcomes of some clinical trials and the preclinical models that informed their design; highlighting what the achievements as well as the failures can teach us going forward. We also discuss the many challenges faced by this field and the areas of inquiry in which focused efforts will bear the most fruit. Ultimately, understanding which differences between preclinical and clinical protocols account for the discrepancy in outcomes will help us in designing more effective treatments for those cancers that remain refractory to therapy. KeywordsCancer-Clinical trials-Cytokine-Immunotherapy-Preclinical models
    12/2010: pages 281-305;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hemokinin-1 (HK-1), encoded by the TAC4 gene, is a tachykinin peptide that is predominantly expressed in non-neuronal cells, such as immune cells. We have disrupted the mouse TAC4 gene to obtain a better understanding of the actions of HK-1 during hematopoiesis. We demonstrate here that TAC4(-/-) mice exhibit an increase of CD19(+)CD117(+)HSA(+)BP.1(-) "fraction B" pro-B cells in the bone marrow, whereas pre-B, immature, and mature B cells are within the normal range. We show that in vitro cultures derived from TAC4(-/-) bone marrow, sorted "fraction B" pro-B cells or purified long-term reconstituting stem cells, contain significantly higher numbers of pro-B cells compared with controls, suggesting an inhibitory role for HK-1 on developing B cells. Supporting this idea, we show that addition of HK-1 to cultures established from long-term reconstituting stem cells and the newly described intermediate-term reconstituting stem cells leads to a significant decrease of de novo generated pro-B cells. Based on our studies, we postulate that HK-1 plays an inhibitory role in hematopoiesis, and we hypothesize that it may be part of the bone marrow microenvironment that supports and regulates the proliferation and differentiation of hematopoietic cells.
    Blood 11/2010; 116(19):3792-801. · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hemokinin-1, encoded by the TAC4 gene, is a tachykinin most closely related to substance P. Previous studies have shown that TAC4 distinguishes itself from other tachykinins by its predominantly non-neuronal expression profile, particularly in cells of the immune system. Here we report for the first time that the highest levels of TAC4 expression are found in the olfactory epithelium. Furthermore, we identify olfactory neuron-specific transcription factor (Olf-1), also known as early B-cell factor (EBF), as a novel regulator of TAC4 expression. EBF present in the olfactory epithelium and in B cells binds to two sites in the TAC4 promoter and modulates expression in developing B cells. Our findings suggest a role for TAC4 in cell differentiation, and represent a regulatory bridge between the nervous system and the immune system.
    Journal of neuroimmunology 10/2010; 232(1-2):41-50. · 2.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we examined whether hemokinin-1, the newest member of the tachykinin family and a close relative of substance P, has antimicrobial properties which have been attributed to other neuropeptides including substance P. Top agar assays were performed to determine the antimicrobial activity of hemokinin-1 and substance P against various microorganisms. Here we provide evidence that hemokinin-1 peptide possesses antimicrobial properties against some strains of Pseudomonas aeruginosa, while substance P was only marginally effective. Our study is the first to link hemokinin-1 to the essential role of defending the body against microbial challenges and adds hemokinin-1 to the list of potential drugs that could help in the fight against P. aeruginosa, an opportunistic human pathogen.
    Life sciences 10/2009; 85(19-20):700-3. · 2.56 Impact Factor

Publication Stats

7k Citations
1,170.26 Total Impact Points

Institutions

  • 2007–2013
    • University Health Network
      Toronto, Ontario, Canada
  • 2002–2012
    • The Princess Margaret Hospital
      Toronto, Ontario, Canada
  • 1990–2012
    • University of Toronto
      • • Department of Immunology
      • • Department of Medical Biophysics
      Toronto, Ontario, Canada
  • 2011
    • National Heart, Lung, and Blood Institute
      Maryland, United States
  • 2006
    • Peking University Health Science Center
      Peping, Beijing, China
  • 1989–2004
    • Ontario Institute for Cancer Research
      Toronto, Ontario, Canada
  • 1999
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France
  • 1994–1997
    • Amgen Canada
      Mississauga, Ontario, Canada
  • 1978
    • Memorial Sloan-Kettering Cancer Center
      New York City, New York, United States