Are you C. S. L. Lee?

Claim your profile

Publications (2)13.16 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Progesterone regulates the proliferation and differentiation of normal mammary epithelium. In breast cancer cells, progesterone and its synthetic analogs, progestins, induce long-term growth inhibition and differentiation. However, the mechanisms responsible are not fully understood. When T-47D breast cancer cells were treated with the synthetic progestin ORG 2058 (16alpha-ethoxy-21-hydroxy-19-norpregn-4-en-3,20-dione), all isoforms of Wilms' tumor protein 1 (Wt1) mRNA and protein were rapidly downregulated. We reasoned that the decrease in Wt1 levels may contribute to the long-term antiproliferative and differentiative effects of progestins as proliferation and differentiation are known end points of Wt1 action. Consistent with this idea, Wt1 small interfering RNA led to a decrease in S phase and cyclin D1 levels, and increased Oil-Red-O staining, indicating increased lipogenesis. Conversely, overexpression of Wt1 attenuated the decrease in S phase induced by ORG 2058 at 48-96 h. This was accompanied by the sustained expression of cyclin D1 despite progestin treatment, and increased levels of retinoblastoma (Rb) phosphorylation at sites targeted by cyclin D1-Cdk4 (Ser249/Thr252). Wt1 overexpression also attenuated the ORG 2058-mediated increase in fatty acid synthase levels and reduced lipogenesis. Thus, Wt1 downregulation was sufficient to mimic the effects of progestin and was necessary for complete progestin-mediated proliferative arrest and subsequent differentiation. Furthermore, Wt1 overexpression modulated the effects of progestins but not anti-estrogens or androgens. These results indicate that Wt1 is an important early target of progestins that regulates both proliferation and differentiation in breast cancer cells.
    Oncogene 02/2008; 27(1):126-38. · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Long-term growth inhibition, arrest in G(1) phase and reduced activity of both cyclin D1-Cdk4 and cyclin E-Cdk2 are elicited by progestin treatment of breast cancer cells in culture. Decreased cyclin expression, induction of p18(INK4c) and increased association of the CDK inhibitors p21(WAF1/Cip1) and p27(Kip1) with cyclin E-Cdk2 have been implicated in these responses. To determine the role of decreased cyclin expression, T-47D human breast cancer cells constitutively expressing cyclin D1 or cyclin E were treated with the progestin ORG 2058. Overexpression of cyclin E had only a modest effect on growth inhibition. Although cyclin E expression was maintained during progestin treatment, cyclin E-Cdk2 activity decreased by approximately 60%. This was accompanied by p27(Kip1) association with cyclin E-Cdk2, indicating that both cyclin E down-regulation and p27(Kip1) recruitment contribute to the decrease in activity. In contrast, overexpression of cyclin D1 induced progestin resistance and cell proliferation continued despite decreased cyclin E-Cdk2 activity. Progestin treatment of cyclin D1-overexpressing cells was associated with increased p27(Kip1) association with cyclin E-Cdk2. Thus the ability of cyclin D1 to confer progestin resistance does not depend on sequestration of p27(Kip1) away from cyclin E-Cdk2, providing evidence for a critical function of cyclin D1 other than as a high-capacity "sink" for p27(Kip1). These data indicate that regulation of cyclin D1 is a critical element of progestin inhibition in breast cancer cells and suggest that breast cancers overexpressing cyclin D1 may respond poorly to progestin therapy.
    Journal of Biological Chemistry 01/2002; 276(50):47675-83. · 4.60 Impact Factor