Are you Bruce A Fortnum?

Claim your profile

Publications (1)4.31 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial wilt, caused by Ralstonia solanacearum, is a serious disease of tobacco in North and South Carolina. In contrast, the disease rarely occurs on tobacco in Georgia and Florida, although bacterial wilt is a common problem on tomato. We investigated whether this difference in disease incidence could be explained by qualitative characteristics of avirulence gene avrA in the R. solanacearum population in the southeastern United States. Sequence analysis established that wild-type avrA has a 792-bp open reading frame. Polymerase chain reaction (PCR) amplification of avrA from 139 R. solanacearum strains generated either 792-bp or approximately 960-bp DNA fragments. Strains that elicited a hypersensitive reaction (HR) on tobacco contained the 792-bp allele, and were pathogenic on tomato and avirulent on tobacco. All HR-negative strains generated a approximately 960-bp DNA fragment, and wilted both tomato and tobacco. The DNA sequence of avrA in six HR-negative strains revealed the presence of one of two putative miniature inverted-repeat transposable elements (MITEs): a 152-bp MITE between nucleotides 542 and 543, or a 170-bp MITE between nucleotides 461 and 462 or 574 and 575. Southern analysis suggested that the 170-bp MITE is unique to strains from the southeastern United States and the Caribbean. Mutated avrA alleles were present in strains from 96 and 75% of North and South Carolina sites, respectively, and only in 13 and 0% of the sites in Georgia and Florida, respectively. Introduction of the wildtype allele on a plasmid into four HR-negative strains reduced their virulence on both tobacco and tomato. Inactivation of avrA in an HR-positive, avirulent strain, resulted in a mutant that was weakly virulent on tobacco. Thus, the incidence of bacterial wilt of tobacco in the southeastern United States is partially explained by which avrA allele dominates the local R. solanacearum population.
    Molecular Plant-Microbe Interactions 01/2005; 17(12):1376-84. · 4.31 Impact Factor