Are you Bo-Kyoung Kim?

Claim your profile

Publications (2)4.81 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Interferon regulatory factor-1 (IRF-1) is an interferon-induced transcriptional activator that suppresses tumors by impeding cell proliferation. Recently, we demonstrated that the level of SUMOylated IRF-1 is elevated in tumor cells, and that SUMOylation of IRF-1 attenuates its tumor-suppressive function. Here we report that SUMOylated IRF-1 mimics IRF-2, an antagonistic repressor, and shows oncogenic potential. To demonstrate the role of SUMOylated IRF-1 in tumorigenesis, we used SUMO-IRF-1 recombinant protein. Stable expression of SUMO-IRF-1 in NIH3T3 cells resulted in focus formation and anchorage-independent growth in soft agar. Inoculation of SUMO-IRF-1-transfected cells into athymic nude mice resulted in tumor formation and infiltration of adipose tissues. Finally, we demonstrated that SUMO-IRF-1 transforms NIH3T3 cells in a dose-dependent manner suggesting that SUMOylated IRF-1 may act as an oncogenic protein in tumor cells.
    Biochemical and Biophysical Research Communications 12/2009; 391(1):926-30. · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the role of autophagy in tumorigenesis remains controversial, recent reports support the notion that inhibition of autophagy promotes tumor formation. Damage-regulated autophagy regulator (DRAM) has been identified as an effector molecule that is critical for p53-mediated apoptosis, and we investigated whether there might be other DRAM-like molecules linking autophagy and apoptosis. In this study, we cloned a novel DRAM-homologous protein, DRAM2, and showed that the expression of DRAM2 is down-regulated in ovarian tumors. DRAM2 is mainly localized in the lysosome, and co-localizes with DRAM. While expression of DRAM or DRAM2 individually did not induce cell death, co-expression of DRAM2 with DRAM significantly induced cell death, while the silencing of endogenous DRAM2 attenuated cell death, suggesting that DRAM2 is involved in cell death. Thus, we propose that reduced expression of DRAM2 may contribute to enhanced cell survival in tumor cells.
    Biochemical and Biophysical Research Communications 11/2009; 390(4):1340-4. · 2.41 Impact Factor