Bianca Altmann

Universität Osnabrück, Osnabrück, Lower Saxony, Germany

Are you Bianca Altmann?

Claim your profile

Publications (4)21.21 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: To adapt to different light intensities, photosynthetic organisms manipulate the flow of electrons through several alternative pathways at the thylakoid membrane. The enzyme ferredoxin:NADP(+) reductase (FNR) has the potential to regulate this electron partitioning because it is integral to most of these electron cascades and can associate with several different membrane complexes. However, the factors controlling relative localization of FNR to different membrane complexes have not yet been established. Maize (Zea mays) contains three chloroplast FNR proteins with totally different membrane association, and we found that these proteins have variable distribution between cells conducting predominantly cyclic electron transport (bundle sheath) and linear electron transport (mesophyll). Here, the crystal structures of all three enzymes were solved, revealing major structural differences at the N-terminal domain and dimer interface. Expression in Arabidopsis thaliana of maize FNRs as chimeras and truncated proteins showed the N-terminal determines recruitment of FNR to different membrane complexes. In addition, the different maize FNR proteins localized to different thylakoid membrane complexes on expression in Arabidopsis, and analysis of chlorophyll fluorescence and photosystem I absorbance demonstrates the impact of FNR location on photosynthetic electron flow.
    The Plant Cell 07/2012; 24(7):2979-91. · 9.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In higher plants, [2Fe-2S] ferredoxin (Fd) proteins are the unique electron acceptors from photosystem I (PSI). Fds are soluble, and distribute electrons to many enzymes, including Fd:NADP(H) reductase (FNR), for the photoreduction of NADP(+). In addition to well studied [2Fe-2S] Fd proteins, higher plants also possess genes for significantly different, as yet uncharacterized Fd proteins, with extended C termini (FdCs). Whether these FdC proteins function as photosynthetic electron transfer proteins is not known. We examined whether these proteins play a role as alternative electron acceptors at PSI, using quantitative RT-PCR to follow how their expression changes in response to acceptor limitation at PSI, in mutant Arabidopsis plants lacking 90-95% of photosynthetic [2Fe-2S] Fd. Expression of the gene encoding one FdC protein, FdC1, was identified as being strongly up-regulated. We confirmed that this protein was chloroplast localized and increased in abundance on PSI acceptor limitation. We purified the recombinant FdC1 protein, which exhibited a UV-visible spectrum consistent with a [2Fe-2S] cluster, confirmed by EPR analysis. Measurements of electron transfer show that FdC1 is capable of accepting electrons from PSI, but cannot support photoreduction of NADP(+). Whereas FdC1 was capable of electron transfer with FNR, redox potentiometry showed that it had a more positive redox potential than photosynthetic Fds by around 220 mV. These results indicate that FdC1 electron donation to FNR is prevented because it is thermodynamically unfavorable. Based on our data, we speculate that FdC1 has a specific function in conditions of acceptor limitation at PSI, and channels electrons away from NADP(+) photoreduction.
    Journal of Biological Chemistry 10/2010; 286(1):50-9. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytosolic NAD-dependent glyceraldehyde 3-P dehydrogenase (GAPDH; GapC; EC 1.2.1.12) catalyzes the oxidation of triose phosphates during glycolysis in all organisms, but additional functions of the protein has been put forward. Because of its reactive cysteine residue in the active site, it is susceptible to protein modification and oxidation. The addition of GSSG, and much more efficiently of S-nitrosoglutathione, was shown to inactivate the enzymes from Arabidopsis thaliana (isoforms GapC1 and 2), spinach, yeast and rabbit muscle. Inactivation was fully or at least partially reversible upon addition of DTT. The incorporation of glutathione upon formation of a mixed disulfide could be shown using biotinylated glutathione ethyl ester. Further-more, using the biotin-switch assay, nitrosylated thiol groups could be shown to occur after treatment with nitric oxide donors. Using mass spectrometry and mutant proteins with one cysteine lacking, both cysteines (Cys-155 and Cys-159) were found to occur as glutathionylated and as nitrosylated forms. In preliminary experiments, it was shown that both GapC1 and GapC2 can bind to a partial gene sequence of the NADP-dependent malate dehydrogenase (EC 1.2.1.37; At5g58330). Transiently expressed GapC-green fluorescent pro-tein fusion proteins were localized to the nucleus in A. thaliana protoplasts. As nuclear localization and DNA binding of GAPDH had been shown in numerous systems to occur upon stress, we assume that such mechanism might be part of the signaling pathway to induce increased malate-valve capacity and possibly other protective systems upon overreduction and initial formation of reactive oxygen and nitrogen species as well as to decrease and protect metabolism at the same time by modification of essential cysteine residues.
    Physiologia Plantarum 02/2008; 133(2):211-28. · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have used yeast two-hybrid screens and biochemical methods to identify glycolytic enzymes that interact with subcellular structures in hypoxic maize seedlings. As binding domain-bait fusion constructs, we have cloned actin, cytosolic aldolase, the three sucrose synthase (SUS) isoforms SUS1, SUS3, and SH1 as well as the SNF1-related protein kinase into yeast and identified cytosolic isoforms of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), enolase, tubulin, and mitochondrial porin voltage-dependent anion channel protein (VDAC) as well as protein kinases and proteins involved in ubiquitinylation and proteasome-linked degradation as interacting activation domain-prey clones. The results were further confirmed using overlay blots (VDAC) as well as co-polymerization and co-precipitation assays (tubulin and actin). Some results were obtained that support the idea of metabolite and modification effects on the association, namely guanosine triphosphate (GTP)/MgCl2 was necessary for the binding of enolase to actin. GAPDH is inactivated upon association with tubulin but then serves to stabilize the microtubules. The findings support the idea of the dynamic formation of locally associated complexes of enzymes involved in sucrose breakdown and glycolysis in plant cells depending on their metabolic state.
    Physiologia Plantarum 09/2005; 125(2):141 - 156. · 3.66 Impact Factor