Beverly C Floyd

University of South Alabama, Mobile, AL, United States

Are you Beverly C Floyd?

Claim your profile

Publications (5)21.9 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Increased oxidative stress is a known cause of cardiac dysfunction in animals and patients with diabetes, but the sources of reactive oxygen species [e.g., superoxide anion (O(2)(-))] and the mechanisms underlying O(2)(-) production in diabetic hearts are not clearly understood. Our aim was to determine whether NADPH oxidase (Nox) is a source of O(2)(-) and whether glucose-6-phosphate dehydrogenase (G6PD)-derived NADPH plays a role in augmenting O(2)(-) generation in diabetes. We assessed cardiac function, Nox and G6PD activities, NADPH levels, and the activities of antioxidant enzymes in heart homogenates from young (9-11 wk old) Zucker lean and obese (fa/fa) rats. We found that myocardial G6PD activity was significantly higher in fa/fa than in lean rats, whereas superoxide dismutase and glutathione peroxidase activities were decreased (P < 0.05). O(2)(-) levels were elevated (70-90%; P < 0.05) in the diabetic heart, and this elevation was blocked by the Nox inhibitor gp-91(ds-tat) (50 microM) or by the mitochondrial respiratory chain inhibitors antimycin (10 microM) and rotenone (50 microM). Inhibition of G6PD by 6-aminonicotinamide (5 mM) and dihydroepiandrosterone (100 microM) also reduced (P < 0.05) O(2)(-) production. Notably, the activities of Nox and G6PD in the fa/fa rat heart were inhibited by chelerythrine, a protein kinase C inhibitor. Although we detected no changes in stroke volume, cardiac output, or ejection fraction, left ventricular diameter was slightly increased during diastole and systole, and left ventricular posterior wall thickness was decreased during systole (P < 0.05) in Zucker fa/fa rats. Our findings suggest that in a model of severe hyperlipidema and hyperglycemia Nox-derived O(2)(-) generation in the myocardium is fueled by elevated levels of G6PD-derived NADPH. Similar mechanisms were found to activate O(2)(-) production and induce endothelial dysfunction in aorta. Thus G6PD may be a useful therapeutic target for treating the cardiovascular disease associated with type 2 diabetes, if second-generation drugs specifically reducing the activity of G6PD to near normal levels are developed.
    AJP Heart and Circulatory Physiology 06/2009; 297(1):H153-62. · 4.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucose metabolism through the glycolysis and hexosamine pathway has been shown to be altered in type 2 diabetes. However, the fate of glucose through the pentose phosphate pathway (PPP) is currently unclear. In this study, we determined whether the activity of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the PPP, is modulated in the liver of Zucker obese fa/fa rats (9-11 weeks of age). We found that G6PD expression and activity, NADPH levels, and 6-phosphogluconate generation were significantly increased in the liver of fa/fa rats. Inhibition of PI3 kinase and Src kinases decreased (p < 0.05) G6PD activity in the fa/fa but not in the lean rat liver, suggesting that G6PD activity is regulated by PI3/Src kinase signaling pathways. G6PD-derived NADPH increased (p < 0.05) superoxide anion levels by 70-90% in fa/fa vs lean rat liver, which was inhibited by the NADPH oxidase inhibitor gp91(ds-tat) (50 microM) and G6PD inhibitors 6-aminonicotinamide (1 mM) and dehydroepiandrosterone (100 microM), therefore indicating that elevated G6PD activity may be responsible for mediating superoxide generation. Interestingly, we also found a positive correlation between liver hypertrophy/increased G6PD activity (r2 = 0.77; p = 0.0009) and liver hypertrophy/superoxide production (r2 = 0.51; p = 0.0091) in fa/fa rats. Increased G6PD and NADPH oxidase expression and activity, in young hyperglycemic and hyperinsulinemic rats before the development of diabetes, seems to be a contributing factor in the induction of oxidative stress. Because inhibition of G6PD activity decreases oxidative stress, we conclude that G6PD behaves as a pro-oxidant in the fa/fa rat liver in type 2 diabetes.
    Free Radical Biology & Medicine 03/2009; 47(3):219-28. · 5.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the failing heart, NADPH oxidase and uncoupled NO synthase utilize cytosolic NADPH to form superoxide. NADPH is supplied principally by the pentose phosphate pathway, whose rate-limiting enzyme is glucose 6-phosphate dehydrogenase (G6PD). Therefore, we hypothesized that cardiac G6PD activation drives part of the excessive superoxide production implicated in the pathogenesis of heart failure. Pacing-induced heart failure was performed in eight chronically instrumented dogs. Seven normal dogs served as control. End-stage failure occurred after 28 +/- 1 days of pacing, when left ventricular end-diastolic pressure reached 25 mm Hg. In left ventricular tissue homogenates, spontaneous superoxide generation measured by lucigenin (5 microM) chemiluminescence was markedly increased in heart failure (1338 +/- 419 vs. 419 +/- 102 AU/mg protein, P < 0.05), as were NADPH levels (15.4 +/- 1.5 vs. 7.5 +/- 1.5 micromol/gww, P < 0.05). Superoxide production was further stimulated by the addition of NADPH. The NADPH oxidase inhibitor gp91(ds-tat) (50 microM) and the NO synthase inhibitor L-NAME (1 mM) both significantly lowered superoxide generation in failing heart homogenates by 80% and 76%, respectively. G6PD was upregulated and its activity higher in heart failure compared to control (0.61 +/- 0.10 vs. 0.24 +/- 0.03 nmol/min/mg protein, P < 0.05), while superoxide production decreased to normal levels in the presence of the G6PD inhibitor 6-aminonicotinamide. We conclude that the activation of myocardial G6PD is a novel mechanism that enhances NADPH availability and fuels superoxide-generating enzymes in heart failure.
    Journal of Molecular and Cellular Cardiology 09/2006; 41(2):340-9. · 5.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The internal mammary artery (IMA) and the radial artery (RA) are routinely used in coronary artery bypass grafting. However, RA grafts have a higher incidence of postoperative vasospasm and comparatively poor patency rates. The present study was undertaken to investigate the signaling pathways mediating contraction and relaxation in the IMA and RA with the aim of better understanding the mechanism underlying the propensity of RA grafts to spasm. We examined the contractile responses of the IMA and RA to KCl (a depolarizing agent), phenylephrine (an alpha-adrenergic agonist), and U46619 (a thromboxane analogue). Contractions induced by KCl or U46619 did not significantly differ in IMA and RA. By contrast, phenylephrine evoked significantly greater contraction of the IMA than the RA. Contractions induced by both phenylephrine and U46619 were dose-dependently inhibited by nifedipine (an L-type calcium channel blocker). Estimation of thromboxane A2 (TxA2) and prostacyclin (PGI2) synthesis revealed that the TxA2 to PGI2 ratio in the RA was twice that in the IMA. Moreover, acetylcholine-induced and nitroglycerin-induced relaxation of RA precontracted with U46619 was significantly impaired, as compared with RA precontracted with phenylephrine. These data suggest that inhibition of nitroglycerin-induced soluble guanylate cyclase activity by U46619 was at least partially responsible for the diminished vasodilatory response of RA to nitric oxide. Our findings suggest that by reducing nitric oxide-stimulated soluble guanylate cyclase activity, the higher TxA2 to PGI2 ratios in RA, and the elevated serum TxA2 levels seen during coronary artery bypass grafting operations, may underlie the vasospasm and poor patency rates seen with the RA.
    The Annals of thoracic surgery 07/2006; 81(6):2147-54. · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Because systems controlled by basal NAD(P)H oxidase activity appear to contribute to differences in responses of endothelium-removed bovine coronary (BCA) and pulmonary (BPA) arteries to hypoxia, we characterized the Nox oxidases activities present in these vascular segments and how cytosolic NAD(P)H redox systems could be controlling oxidase activity. BPA generated approximately 60-80% more lucigenin (5 microM) chemiluminescence detectable superoxide than BCA. Apocynin (10 microM), a NAD(P)H oxidase inhibitor, and 6-aminonicotinamide (1 mM), a pentose phosphate inhibitor (PPP), both attenuated (approximately by 50-70%) superoxide detected in BPA and BCA. There was no significant difference in the expression of Nox2 or Nox4 mRNA or protein detected by Western blot analysis. NADPH and NADH increased superoxide in homogenates and isolated microsomal membrane fractions in a manner consistent with BPA and BCA having similar levels of oxidase activity. BPA had 4.2-fold higher levels of NADPH than BCA. The activity and protein levels of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting PPP enzyme generating cytosolic NADPH, were 1.5-fold higher in BPA than BCA. Thus BPA differ from BCA in that they have higher levels of G6PD activity, NADPH, and superoxide. Because both arteries have similar levels of Nox expression and activity, elevated levels of cytosolic NADPH may contribute to increased superoxide in BPA.
    AJP Heart and Circulatory Physiology 02/2005; 288(1):H13-21. · 4.01 Impact Factor