Anne-Marie Le Sourd

Paris Diderot University, Lutetia Parisorum, Île-de-France, France

Are you Anne-Marie Le Sourd?

Claim your profile

Publications (9)68.68 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Social communication is heavily affected in patients with neuropsychiatric disorders. Accordingly, mouse models designed to study the mechanisms leading to these disorders are tested for this phenotypic trait. Test conditions vary between different models, and the effect of these test conditions on the quantity and quality of social interactions and ultrasonic communication is unknown. The present study examines to which extent the habituation time to the test cage as well as the shape / size of the cage influence social communication in freely interacting mice. We tested 8 pairs of male mice in free dyadic social interactions, with two habituation times (20 min and 30 min) and three cage formats (rectangle, round, square). We tested the effect of these conditions on the different types of social contacts, approach-escape sequences, follow behavior, and the time each animal spent in the vision field of the other one, as well as on the emission of ultrasonic vocalizations and their contexts of emission. We provide for the first time an integrated analysis of the social interaction behavior and ultrasonic vocalizations. Surprisingly, we did not highlight any significant effect of habituation time and cage shape / size on the behavioral events examined. There was only a slight increase of social interactions with the longer habituation time in the round cage. Remarkably, we also showed that vocalizations were emitted during specific behavioral sequences especially during close contact or approach behaviors. The present study provides a protocol reliably eliciting social contacts and ultrasonic vocalizations in adult male mice. This protocol is therefore well adapted for standardized investigation of social interactions in mouse models of neuropsychiatric disorders.
    PLoS ONE 03/2015; 10(3):e0121802. DOI:10.1371/journal.pone.0121802 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mouse ultrasonic vocalisations have been often used as a paradigm to extrapolate vocal communication defects observed in patients with autism spectrum disorders (ASD). The role of these vocalisations as well as their development, structure and informational content, however, remain largely unknown. In the present study, we characterised in depth the emission of pup and adult ultrasonic vocalisations of wild-type mice and their ProSAP1/Shank2(-/-) littermates lacking a synaptic scaffold protein mutated in ASD. We hypothesized that the vocal behaviour of ProSAP1/Shank2(-/-) mice not only differs from the vocal behaviour of their wild-type littermates in a quantitative way, but also presents more qualitative abnormalities in temporal organisation and acoustic structure. We first quantified the rate of emission of ultrasonic vocalisations, and analysed the organisation of vocalisations sequences using Markov models. We subsequently measured duration and peak frequency characteristics of each ultrasonic vocalisation, to characterise their acoustic structure. In wild-type mice, we found a high level of organisation in sequences of ultrasonic vocalisations, suggesting a communicative function in this complex system. Very limited significant sex-related variations were detected in their usage and acoustic structure, even in adult mice. In adult ProSAP1/Shank2(-/-) mice, we found abnormalities in the call usage and the structure of ultrasonic vocalisations. Both ProSAP1/Shank2(-/-) male and female mice uttered less vocalisations with a different call distribution and at lower peak frequency in comparison with wild-type littermates. This study provides a comprehensive framework to characterise abnormalities of ultrasonic vocalisations in mice and confirms that ProSAP1/Shank2(-/-) mice represent a relevant model to study communication defects.
    Behavioural brain research 08/2013; 256. DOI:10.1016/j.bbr.2013.08.031 · 3.39 Impact Factor
  • Source
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antibodies normally do not cross the blood-brain barrier (BBB) and cannot bind an intracellular cerebral antigen. We demonstrate here for the first time that a new class of antibodies can cross the BBB without treatment. Camelids produce native homodimeric heavy-chain antibodies, the paratope being composed of a single-variable domain called VHH. Here, we used recombinant VHH directed against human glial fibrillary acidic protein (GFAP), a specific marker of astrocytes. Only basic VHHs (e.g., pI=9.4) were able to cross the BBB in vitro (7.8 vs. 0% for VHH with pI=7.7). By intracarotid and intravenous injections into live mice, we showed that these basic VHHs are able to cross the BBB in vivo, diffuse into the brain tissue, penetrate into astrocytes, and specifically label GFAP. To analyze their ability to be used as a specific transporter, we then expressed a recombinant fusion protein VHH-green fluorescent protein (GFP). These "fluobodies" specifically labeled GFAP on murine brain sections, and a basic variant (pI=9.3) of the fusion protein VHH-GFP was able to cross the BBB and to label astrocytes in vivo. The potential of VHHs as diagnostic or therapeutic agents in the central nervous system now deserves attention. Li, T., Bourgeois, J.-P., Celli, S., Glacial, F., Le Sourd, A.-M., Mecheri, S., Weksler, B., Romero, I., Couraud, P.-O., Rougeon, F., and Lafaye, P. Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: application to brain imaging.
    The FASEB Journal 06/2012; 26(10):3969-79. DOI:10.1096/fj.11-201384 · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorders comprise a range of neurodevelopmental disorders characterized by deficits in social interaction and communication, and by repetitive behaviour. Mutations in synaptic proteins such as neuroligins, neurexins, GKAPs/SAPAPs and ProSAPs/Shanks were identified in patients with autism spectrum disorder, but the causative mechanisms remain largely unknown. ProSAPs/Shanks build large homo- and heteromeric protein complexes at excitatory synapses and organize the complex protein machinery of the postsynaptic density in a laminar fashion. Here we demonstrate that genetic deletion of ProSAP1/Shank2 results in an early, brain-region-specific upregulation of ionotropic glutamate receptors at the synapse and increased levels of ProSAP2/Shank3. Moreover, ProSAP1/Shank2(-/-) mutants exhibit fewer dendritic spines and show reduced basal synaptic transmission, a reduced frequency of miniature excitatory postsynaptic currents and enhanced N-methyl-d-aspartate receptor-mediated excitatory currents at the physiological level. Mutants are extremely hyperactive and display profound autistic-like behavioural alterations including repetitive grooming as well as abnormalities in vocal and social behaviours. By comparing the data on ProSAP1/Shank2(-/-) mutants with ProSAP2/Shank3αβ(-/-) mice, we show that different abnormalities in synaptic glutamate receptor expression can cause alterations in social interactions and communication. Accordingly, we propose that appropriate therapies for autism spectrum disorders are to be carefully matched to the underlying synaptopathic phenotype.
    Nature 06/2012; 486(7402):256-60. DOI:10.1038/nature11015 · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Author Summary Viruses are obligate parasites. The progression of their life cycle depends on their hijacking the cellular metabolism and machinery. Human neurons produce TLR3, a protein involved in early host defence mechanisms and the modulation of neuronal survival. Rabies virus is a neurotropic virus, infecting mainly neurons. In this study, we showed that rabies virus exploits TLR3 function to store viral proteins and viral genomic material in particular areas of the cell where virus multiplication occurs. We found that, during the course of infection, large (1–3 µm) spherical inclusions were formed within the region around the nucleus. These inclusions were composed of an inner core of aggregated TLR3 surrounded by a coat of viral proteins and genomic material. These inclusions were revealed to be the previously described Negri Bodies (NBs). In absence of TLR3, NBs were no longer formed and virus multiplication rate decreased. Mice deficient in TLR3 were more resistant to rabies and had lower levels of infection in their brains. This study shows how neurotropic viruses, such as rabies virus, hijack normal functions of neuronal proteins and use cell compartmentalisation to promote viral multiplication.
    PLoS Pathogens 03/2009; 5(2):e1000315. DOI:10.1371/journal.ppat.1000315 · 8.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Preexisting cognitive impairment and advanced age are factors that increase the risk of developing postoperative cognitive dysfunction. Because anesthetic agents interfere with cholinergic transmission and as impairment of cholinergic function is associated with cognitive decline, the authors studied how the volatile anesthetic sevoflurane affects exploratory and anxiety-like behavior in young and aged animals with a genetically modified cholinergic system. Young and aged wild-type and mutant mice lacking the beta2 subunit of the nicotinic cholinergic receptor (beta2KO) were anesthetized for 2 h with 2.6% sevoflurane in oxygen and compared with nonanesthetized controls. Locomotor activity and organization of movement in the open field model were assessed before and 24 h after anesthesia. Locomotor activity and anxiety-like behavior in the elevated plus maze were assessed 24 h after anesthesia. High- and low-affinity nicotinic receptor and cholinergic uptake site densities were evaluated in the hippocampus, amygdala, and forebrain regions using receptor autoradiography. Sevoflurane anesthesia significantly reduced locomotor activity, altered temporospatial organization of trajectories, and increased anxiety-like behavior in young beta2KO mice, whereas no such changes were observed in young wild-type mice. Aged wild-type and beta2KO mice displayed reactions that were similar, but not identical, to the reactions of young mice to sevoflurane anesthesia. However, behavioral changes were not associated with differences in nicotinic receptor or cholinergic uptake site densities. In conclusion, sevoflurane anesthesia altered exploratory and anxiety-like behavior in mice lacking the beta2 nicotinic acetylcholine receptor subunit.
    Anesthesiology 12/2008; 109(5):790-8. DOI:10.1097/ALN.0b013e31818a379a · 6.17 Impact Factor
  • BMC proceedings 01/2008; 2(Suppl 1). DOI:10.1186/1753-6561-2-s1-p41

Publication Stats

208 Citations
68.68 Total Impact Points

Institutions

  • 2012–2015
    • Paris Diderot University
      Lutetia Parisorum, Île-de-France, France
    • Weill Cornell Medical College
      New York, New York, United States
  • 2009
    • Institut Pasteur
      • Department of Virology
      Lutetia Parisorum, Île-de-France, France
  • 2008
    • Karolinska Institutet
      Solna, Stockholm, Sweden