Are you Amarendra M. Kumar?

Claim your profile

Publications (2)2.94 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of lead on the signal transduction pathways that may be involved in the release of gonadotropin-releasing hormone (GnRH) from neurons in the hypothalamus have not been well defined. Using the GT1-7 cell line, an in vitro model for GnRH-secreting neurons, we examined signal transduction pathways directly affected by lead. We found that lead-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK2), as well as p90RSK and cAMP response element-binding protein (CREB), but did not induce IkappaB degradation. MEK1/2 inhibitor (PD98059) suppressed lead-induced ERK and p90RSK activation. Neither PKC inhibitors (Go6983, Go6976) nor CaMKII inhibitor (KN-62) had a pronounced effect on lead-induced ERK1 and ERK2 phosphorylation. However, MEK1/2 inhibitor, CaMKII inhibitor, and PKC inhibitor significantly suppressed lead-induced CREB phosphorylation. These results indicate that lead-activated PKC, CaMKII and MEK/ERK/p90RSK pathways simultaneously, all of which contributed to CREB phosphorylation. Our results also indicate that lead-induced p90RSK and CREB activation does not alter expression of early response genes like c-fos. We conclude that lead activates PKC, CaMKII or MEK-ERK-p90RSK pathways in GT1-7 cells, leading to CREB phosphorylation and modulation of gene expression.
    Brain Research Bulletin 08/2003; 61(2):207-17. · 2.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of lead on the signal transduction pathways that may be involved in the release of gonadotropin-releasing hormone (GnRH) from neurons in the hypothalamus have not been well defined. Using the GT1–7 cell line, an in vitro model for GnRH-secreting neurons, we examined signal transduction pathways directly affected by lead. We found that lead-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK2), as well as p90RSK and cAMP response element-binding protein (CREB), but did not induce IκB degradation. MEK1/2 inhibitor (PD98059) suppressed lead-induced ERK and p90RSK activation. Neither PKC inhibitors (Go6983, Go6976) nor CaMKII inhibitor (KN-62) had a pronounced effect on lead-induced ERK1 and ERK2 phosphorylation. However, MEK1/2 inhibitor, CaMKII inhibitor, and PKC inhibitor significantly suppressed lead-induced CREB phosphorylation. These results indicate that lead-activated PKC, CaMKII and MEK/ERK/p90RSK pathways simultaneously, all of which contributed to CREB phosphorylation. Our results also indicate that lead-induced p90RSK and CREB activation does not alter expression of early response genes like c-fos. We conclude that lead activates PKC, CaMKII or MEK-ERK-p90RSK pathways in GT1–7 cells, leading to CREB phosphorylation and modulation of gene expression.
    Brain Research Bulletin - BRAIN RES BULL. 01/2003; 61(2):207-217.