Alicia Inés Torres

National University of Cordoba, Argentina, Córdoba, Córdoba, Argentina

Are you Alicia Inés Torres?

Claim your profile

Publications (30)77.56 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Experimental autoimmune encephalomyelitis (EAE) is an animal model that mimics many of the clinical and pathological features of the human disease multiple sclerosis (MS). Both are inflammatory demyelinating and neurodegenerative pathologies of the central nervous system associated with motor, sensory, and cognitive deficits. In MS, gray matter atrophy is related to the emergence of cognitive deficits and contributes to clinical progression. In particular, prefrontal cortex injury and dysfunction have been correlated to the development of fatigue, one of the most common and disabling symptoms in MS. However, the molecular bases of these changes remain unknown. Taking advantage of EAE similitude, we herein analyze functional and morphological changes in isolated cortical presynaptic terminals (synaptosomes) from an acute rat model. We found impaired glutamate release in the frontal cortex from EAE rats. This defect appeared along with the onset of the disease, reversing when clinical signs were no more evident. Biochemical analysis of EAE synaptosomes revealed alterations in the presynaptic release machinery and in the response to depolarization, which was accompanied by abnormal synapsin I phosphorylation and dispersion. These changes were associated with reduced synaptic vesicle mobility, with no alterations in synaptosomal morphology as evidenced by electron microscopy. The present are the first pieces of evidence unraveling the molecular mechanisms of frontal cortex neuronal dysfunction in EAE and, possibly, MS.
    Molecular neurobiology. 07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interest in biochemistry of organoselenium compound has increased in the last decades, mainly due to their chemical and biological activities. Here, we investigated the protective effect of diphenyl diselenide (PhSe)2 (5 μmol/kg), in a mouse model of methylmercury (MeHg)-induced brain toxicity. Swiss male mice were divided into four experimental groups: control, (PhSe)2 (5 μmol/kg, subcutaneous administration), MeHg (40 mg/L, in tap water), and MeHg + (PhSe)2. After the treatment (21 days), the animals were killed and the cerebral cortex was analyzed. Electron microscopy indicated an enlarged and fused mitochondria leading to a reduced number of organelles, in the MeHg-exposed mice. Furthermore, cortical creatine kinase activity, a sensitive mitochondrial oxidative stress sensor, was almost abolished by MeHg. Subcutaneous (PhSe)2 co-treatment rescued from MeHg-induced mitochondrial alterations. (PhSe)2 also behaved as an enhancer of mitochondrial biogenesis, by increasing cortical mitochondria content in mouse-receiving (PhSe)2 alone. Mechanistically, (PhSe)2 (1 μM; 24 h) would trigger the cytoprotective Nrf-2 pathway for activating target genes, since astroglial cells exposed to the chalcogen showed increased content of hemeoxygenase type 1, a sensitive marker of the activation of this via. Thus, it is proposed that the (PhSe)2-neuroprotective effect might be linked to its mitoprotective activity.
    Molecular and Cellular Biochemistry 03/2014; · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bronchiolar Clara cells play a critical role in lung homoeostasis. The main goal of this study was to evaluate the effects of chronic allergy on these cells and the efficacy of budesonide (BUD) and montelukast (MK) in restoring their typical phenotypes after ovalbumin-induced chronic allergy in mice. Chronic allergy induced extensive bronchiolar Alcian blue-periodic acid-Schiff (AB/PAS)-positive metaplasia. In addition, cells accumulated numerous big electron-lucent granules negative for Clara cell main secretory protein (CC16), and consequently, CC16 was significantly reduced in bronchoalveolar lavage. A concomitant reduction in SP-D and CYP2E1 content was observed. The phenotypic changes induced by allergy were pharmacologically reversed by both treatments; MK was more efficient than BUD in doing so. MK decreased AB/PAS reactivity to control levels whereas they remained persistently elevated after BUD. Moreover, most non-ciliated cells recovered their normal morphology after MK, whereas for BUD normal cells coexisted with 'transitional' cells that contained remnant mucous granules and stained strongly for CC16 and SP-D. Glucocorticoids were also less able to reduce inflammatory infiltration and maintained higher percentage of neutrophils, which may have contributed to prolonged mucin expression. These results show that chronic allergy-induced mucous metaplasia of Clara cells affects their defensive mechanisms. However, anti-inflammatory treatments were able to re-establish the normal phenotype of Clara cell, with MK being more efficient at restoring a normal profile than BUD. This study highlights the role of epithelial cells in lung injuries and their contribution to anti-inflammatory therapies.
    International Journal of Experimental Pathology 09/2013; · 2.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analysed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signalling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K-Akt and NF-κB signalling pathways.
    Experimental Cell Research 08/2013; · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present work we investigated the effect of 17β-estradiol (E2) and basic fibroblast growth factor (FGF2) on the lactotroph cell proliferative response and the related membrane-initiated signalling pathway. Anterior pituitary mixed cell cultures of random cycling 3-month-old female rats were treated with 10nM of E2, E2 membrane-impermeable conjugated (E2-BSA), PPT (ERα agonist) and DPN (ERβ agonist) alone or combined with FGF2 (10ng/ml) for 30min or 4h. Although our results showed that the uptake of BrdU into the nucleus of lactotrophs was not modified by E2 or FGF2 alone, a significant increase in the lactotrophs uptake of BrdU was observed after E2/FGF2 co-incubation, with this effect being mimicked by PPT/FGF2. These proliferative effects were blocked by ICI182780 or PD98059. The involvement of membrane ER in the proliferative response of prolactin cells induced by the steroid and FGF2 co-incubation was confirmed using E2-BSA, and the association between ERα and FGF receptor was observed after E2/FGF2 treatment by immunoprecipitation. A significant increase in the ERK1/2 expression was noted after E2, E2-BSA, PPT and FGF2 alone, which was more noticeable after E2-BSA/FGF-2, E2/FGF2 or PPT/FGF2 treatments. This study provides evidence that E2 and FGF2 exert a cooperative effect on the lactotroph proliferation principally by signalling initiated at the plasma membrane triggering a genomic effect mediated by MEK/ERK1/2, a common signalling pathway, which finally regulates the lactotroph population thus contributing to pituitary plasticity.
    AJP Endocrinology and Metabolism 05/2013; · 4.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fabry disease is caused by an X-linked recessive inborn error of glycosphingolipid metabolism with deficient activity of a lysosomal enzyme, alpha-galactosidase A (α-GalA). A 46 year-old man with progressive kidney disease showed on kidney biopsy electron microscopic evidence of Fabry disease. The patient had no systemic manifestations of Fabry disease, despite residual α-GalA activity, therefore genetic testing was done by direct DNA sequencing, demonstrating a new GAL A gene mutation (C174G-exon 3). After three years of enzyme replacement therapy (agalsidase beta) treatment, a second biopsy was done. Although there was demonstrable clearance of intracellular inclusions, remarkable podocyte activation was evident. This report represents an unusual renal variant of Fabry disease and provides histologic data on long-term follow up after enzyme replacement therapy.
    Journal of nephropathology. 10/2012; 1(3):194-7.
  • Nefrologia: publicacion oficial de la Sociedad Espanola Nefrologia 05/2012; 32(3):414-5. · 1.27 Impact Factor
  • Source
    Nefrologia: publicacion oficial de la Sociedad Espanola Nefrologia 03/2012; 32(2):245-6. · 1.27 Impact Factor
  • Source
    03/2012; , ISBN: 978-953-51-0229-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: Considering that estradiol is a major modulator of prolactin (PRL) secretion, the aim of the present study was to analyze the role of membrane estradiol receptor-α (mERα) in the regulatory effect of this hormone on the PRL secretion induced by thyrotropin-releasing hormone (TRH) by focusing on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway activation. Anterior pituitary cell cultures from female rats were treated with 17β-estradiol (E(2), 10 nM) and its membrane-impermeable conjugated estradiol (E(2)-BSA, 10 nM) alone or coincubated with TRH (10 nM) for 30 min, with PRL levels being determined by RIA. Although E(2), E(2)-BSA, TRH, and E(2)/TRH differentially increased the PRL secretion, the highest levels were achieved with E(2)-BSA/TRH. ICI-182,780 did not modify the TRH-induced PRL release but significantly inhibited the PRL secretion promoted by E(2) or E(2)-BSA alone or in coincubation with TRH. The PI3K inhibitors LY-294002 and wortmannin partially inhibited the PRL release induced by E(2)-BSA, TRH, and E(2)/TRH and totally inhibited the PRL levels stimulated by E(2)-BSA/TRH, suggesting that the mER mediated the cooperative effect of E(2) on TRH-induced PRL release through the PI3K pathway. Also, the involvement of this kinase was supported by the translocation of its regulatory subunit p85α from the cytoplasm to the plasma membrane in the lactotroph cells treated with E(2)-BSA and TRH alone or in coincubation. A significant increase of phosphorylated Akt was induced by E(2)-BSA/TRH. Finally, the changes of ERα expression in the plasmalemma of pituitary cells were examined by confocal microscopy and flow cytometry, which revealed that the mobilization of intracellular ERα to the plasma membrane of lactotroph cells was only induced by E(2). These finding showed that E(2) may act as a modulator of the secretory response of lactotrophs induced by TRH through mER, with the contribution by PI3K/Akt pathway activation providing a new insight into the mechanisms underlying the nongenomic action of E(2) in the pituitary.
    AJP Endocrinology and Metabolism 02/2012; 302(10):E1189-97. · 4.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present work we aimed at identifying ERα in the plasma membrane of normal anterior pituitary cells and investigated if 17β-estradiol was able to induce their subcellular redistribution. Our results show that about 8% of anterior pituitary cells expressed ERα in the plasma membrane, with the geometrical mean fluorescence intensity being increased after steroid hormone treatment. 17β-Estradiol and the selective ERα agonist PPT induced an increase of ERα expression in the plasma membrane and activated the PKCα/ERK 1/2 pathway in a time-course not compatible with genomic actions, thus supporting the notion of membrane-initiated effects. These findings suggest that 17β-estradiol stimulates the translocation of endogenous ERα to the plasma membrane, consequently modulating this ER pool and leading to cellular biological effects in normal anterior pituitary gland.
    Molecular and Cellular Endocrinology 02/2012; 355(1):169-79. · 4.04 Impact Factor
  • Medicina 06/2011; 71(3):257-257. · 0.42 Impact Factor
  • Medicina 01/2011; 71(3):257. · 0.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lactotroph cells display morphological and functional heterogeneity, a feature which is closely related to the oestrogenic environment. In this study, we focused on sex-related differences linked to the proliferative and secretory responses of lactotrophs exposed to EGF in vitro. Furthermore, we addressed the involvement of the PKCε/ERK1/2 signalling pathway and the contribution of Pit-1 in the EGF actions in primary pituitary cultures from male and female rats. EGF promoted a differential proliferative activity on PRL cells, which was closely associated to the sex, as revealed by the uptake of bromodeoxyuridine (BrdU). In females, the mitogenic activity was up to nine times greater, whereas in males, the number of BrdU-labelled PRL cells was only doubled compared to control. However, in both models, EGF had a similar effectiveness in promoting PRL secretion. EGF also induced a significant increase in the PKCε, P -ERK 1/2, and Pit-1 protein levels, which were higher in females than in males. Pre-incubation with BIM blocked EGF-induced ERK 1/2 activation and Pit-1 expression. These results suggest a sexually dimorphic response of lactotroph cells to the proliferative effects of EGF, with the PKCε/ERK1/2 Pit-1 pathway being involved in this action.
    Experimental physiology 11/2010; · 3.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The initial segment of the caput epididymidis, the most proximal part of the rat epididymis, has specific functional characteristics. In the present study, the behavior of the epididymal epithelium from this region was evaluated after the exposure to a massive number of immature germ cells in the luminal fluid. The experimental release of immature germ cells from the seminiferous tubules was performed by injecting anti-microtubule compounds into the rete testis and the lumen of seminiferous tubules. Twenty-four hours after nocodazole or colchicine administration, a massive phagocytosis of immature spermatogenic cells, recognized as acrosin-positive structures, was easily observed in the epithelium of the initial segment of the epididymis assessed by light and electron microscopy. Immature germ cells were engulfed by epithelial cells, where most of them were found as cell debris at different stages of degradation. No signs of inflammation were observed either in the lumen or in the interstitium. The phagocytosis of immature germ cells was restricted to the epithelium of the initial segment of the epididymis, suggesting a role for this segment as the first selective barrier for the exclusion of abnormal gametes along the male genital tract.
    Cells Tissues Organs 09/2010; 193(3):170-83. · 1.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The variations of the intracellular localization of the individual protein kinase C (PKC) isoforms are related with their different biological functions. In this study, we have investigated the precise intracellular translocation of endogenous PKCalpha and PKCepsilon in PMA-stimulated normal and tumoral lactotroph cells by using confocal and immunogold electron microscopy, which was correlated with the rate of cell proliferation of both pituitary cell phenotypes. The present results showed that the short phorbol ester incubation stimulated the proliferation of normal and tumoral lactotroph cells, as determined by the measurement of the BrdU-labelling index. The translocation of PKCalpha to plasma and nuclear membranes induced by PMA was more marked than that observed for PKCepsilon in normal and tumoral lactotroph cells. Our results showed that PKCs translocation to the plasma and nuclear membranes varied from isozyme to isozyme emphasizing that PKCalpha could be related with the mitogenic stimulus exerted by phorbol ester. These data support the notion that specific PKC isozymes may exert spatially defined effects by virtue of their directed translocation to distinct intracellular sites.
    Journal of molecular histology 02/2010; 40(5-6):417-25. · 1.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this report, we explored the role of PKCalpha and PKCe as mediators of phorbol 12-myristate13-acetate (PMA)-induced proliferation in pituitary tumor GH3B6 cells, and determined if the ERK1/2 and Akt pathways were activated. The GH3B6 cell proliferation was estimated by BrdU incorporation and the cell cycle progression by flow cytometric cell cycle analysis. We determined the expression of PKCalpha and PKCe in membrane and cytosolic fractions by western blotting. The subcellular redistribution of both PKC isozymes was analyzed by confocal microscopy. Incubation with PMA for 15 min stimulated PKCalpha and PKCe activation, which was correlated with the phosphorylation of ERK1/2 but not Akt. The activation of both these PKC isozymes was closely associated with the stimulation of proliferation and the cell cycle progression induced by PMA in GH3B6 cells, an effect that was blocked by the inhibitors of PKCalpha (Gö6976) and PKCe (eV1-2). In addition, the pretreatment with the inhibitor of ERK1/2 (PD98059) prevented the mitogenic activity induced by treatment with PMA for 15 min. We demonstrated that the activation of PKCalpha and PKCe by phorbol ester in tumor pituitary GH3B6 cells led to cell proliferation and cell cycle progression, effects that involved ERK1/2 activation.
    Cellular Physiology and Biochemistry 01/2010; 26(2):135-46. · 3.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The neuropeptide EI (NEI) is derived from proMCH. It activates GnRH neurons, and has been shown to stimulate the LH release following intracerebroventricular administration in several experimental models. The aim of the present paper was to evaluate NEI actions on pituitary hormone secretion and cell morphology in vitro. Pituitary cells from female rats were treated with NEI for a wide range of concentrations (1-400x10(-8)M) and time periods (1-5h). The media were collected and LH, FSH, PRL, and GH measured by RIA. The interaction between NEI (1, 10 and 100x10(-8)M) and GnRH (0.1 and 1x10(-9)M) was also tested. Pituitary cells were harvested for electron microscopy, and the immunogold immunocytochemistry of LH was assayed after 2 and 4h of NEI incubation. NEI (100x10(-8)M) induced a significant LH secretion after 2h of stimulus, reaching a maximum response 4h later. A rapid and remarkable LH release was induced by NEI (400x10(-8)M) 1h after stimulus, attaining its highest level at 2h. However, PRL, GH and FSH were not affected. NEI provoked ultrastructural changes in the gonadotrophs, which showed accumulations of LH-immunoreactive granules near the plasma membrane and exocytotic images, while the other populations exhibited no changes. Although NEI (10x10(-8)M), caused no action when used alone, its co-incubation with GnRH (1x10(-9)M), promoted a slight but significant increase in LH. These results demonstrate that NEI acts at the pituitary level through a direct action on gonadotrophs, as well as through interaction with GnRH.
    Peptides 10/2009; 30(11):2081-7. · 2.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bromocriptine (Bc) produces pituitary tumoral mass regression which induces the cellular death that was classically described as apoptosis. However, recent works have related that other mechanisms of cell death could also be involved in the maintenance of physiological and pathological pituitary homeostasis. The aim of this study was to evaluate and characterize the different types of cell death in the involution induced by Bc in experimental rat pituitary tumors.The current study demonstrated that Bc induced an effective regression of estrogen induced pituitary tumors by a mechanism identified as parapoptosis. This alternative cell death was ultrastructurally recognized by extensive cytoplasmic vacuolization and an increased cell electron density, represented around 25% of the total pituitary cells counted. Furthermore, the results obtained from biochemical assays did not correspond to the criteria of apoptosis or necrosis.We also investigated the participation of p38, ERK1/2 and PKCδ in the parapoptotic pathway. An important observation was the significant increase in phosphorylated forms of these MAPKs, the holoenzyme and catalytic fragments of PKCδ in nuclear fractions after Bc administration compared to control and estrogen treated rats. Furthermore, the immunolocalization at ultrastructural level of these kinases showed a similar distribution pattern, with a prevalent localization at nuclear level in lactotrophs from Bc treated rats.In summary, we determined that parapoptosis is the predominant cell death type involved in the regression of pituitary tumors in response to Bc treatment, and may cause the activation of PKCδ, ERK1/2 and p38.
    Toxicology and Applied Pharmacology 10/2009; · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this investigation was to contribute to current knowledge about intracellular mechanisms that are involved in lactotroph cell proliferation, by evaluating the role of PKCalpha, PKCepsilon and extracellular-signal regulated kinase (ERK) 1/2 in response to phorbol 12-myristate13-acetate (PMA). In primary pituitary cultures, the activation of protein kinase C (PKC) by PMA for 15 min stimulated lactotroph proliferation; whereas a prolonged activation for 3-8h diminished this proliferative effect. The use of PMA for 15 min-activated PKCepsilon and ERK1/2, whereas incubation with PMA for 3 h induced PKCalpha activation and attenuated the PMA-triggered phosphorylation of ERK1/2. The following inhibitors: PKCs (bisindolylmaleimide I), PKCepsilon (epsilonV1 peptide) and ERK1/2 (PD98059) prevented the mitogenic activity induced by PMA for 15 min. Lactotroph cells stimulated with PMA for 15 min showed a translocation of PKCepsilon to membrane compartment and nucleus. These results thus establish that PKCepsilon plays an essential role in the lactotroph proliferation induced by PMA by triggering signals that involve ERK1/2 activation.
    Molecular and Cellular Endocrinology 08/2008; 289(1-2):77-84. · 4.04 Impact Factor