Alejandro O Mujica

Wellcome Trust Sanger Institute, Cambridge, England, United Kingdom

Are you Alejandro O Mujica?

Claim your profile

Publications (4)7.58 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Colocalization of Stk33 with vimentin by double immunofluorescence in certain cells indicated that vimentin might be a target for phosphorylation by the novel kinase Stk33. We therefore tested in vitro the ability of Stk33 to phosphorylate recombinant full length vimentin and amino-terminal truncated versions thereof. In order to prove that Stk33 and vimentin are also in vivo associated proteins co-immunoprecipitation experiments were carried out. For testing the enzymatic activity of immunoprecipitated Stk33 we incubated precipitated Stk33 with recombinant vimentin proteins. To investigate whether Stk33 binds directly to vimentin, an in vitro co-sedimentation assay was performed. The results of the kinase assays demonstrate that Stk33 is able to specifically phosphorylate the non-alpha-helical amino-terminal domain of vimentin in vitro. Furthermore, co-immunoprecipitation experiments employing cultured cell extracts indicate that Stk33 and vimentin are associated in vivo. Immunoprecipitated Stk33 has enzymatic activity as shown by successful phosphorylation of recombinant vimentin proteins. The results of the co-sedimentation assay suggest that vimentin binds directly to Stk33 and that no additional protein mediates the association. We hypothesize that Stk33 is involved in the in vivo dynamics of the intermediate filament cytoskeleton by phosphorylating vimentin.
    BMC Biochemistry 10/2008; 9(1):25. DOI:10.1186/1471-2091-9-25 · 1.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Serine/threonine kinase 33 (STK33/Stk33) is a recently discovered gene whose inferred amino acid sequence translation displays characters typical for a calcium/calmodulin dependent kinase (CAMK). In this study we analysed the STK33/Stk33 RNA and protein distribution and the localization of the protein. The STK33/Stk33 expression pattern resembles those of some related members of the CAMK group. STK33/Stk33 displays a nonubiquitous and, in most tissues, low level of expression. It is highly expressed in testis, particularly in cells from the spermatogenic epithelia. Moreover, significant expression is detected in lung epithelia, alveolar macrophages, horizontal cells in the retina and in embryonic organs such as heart, brain and spinal cord. A possible role of STK33/Stk33 in spermatogenesis and organ ontogenesis is discussed.
    FEBS Journal 11/2005; 272(19):4884-98. DOI:10.1111/j.1742-4658.2005.04900.x · 4.00 Impact Factor
  • Alejandro O. Mujica · Thomas Hankeln · Erwin R. Schmidt
    [Show abstract] [Hide abstract]
    ABSTRACT: Human chromosomal region 11p15 is known to be associated with several diseases including predispositions to develop various tumor types. In search of candidate genes, a novel human kinase gene is described, STK33, which codes for a serine/threonine protein kinase. The gene was discovered by comparative genome analysis of human chromosome 11p15.3 and its orthologous region on distal mouse chromosome 7. Human STK33 gene contains 12 exons as has been determined by the comparison to the full-length transcript amplified from human uterus RNA. Transcripts are found in a variety of tissues in at least two alternatively spliced forms as revealed by reverse transcriptase-polymerase chain reaction, cDNA sequencing and expressed sequence tag clustering. Phylogenetic analysis suggests that STK33 may belong to the calcium/calmodulin-dependent protein kinase group, even though, like several other members of the group, it lacks the calcium/calmodulin binding domain [FASEB J. 9 (1995) 576]. STK33 shows a differential expression in a variety of normal and malignant tissues.
    Gene 01/2002; 280(1-2):175-81. DOI:10.1016/S0378-1119(01)00780-6 · 2.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Comparative genomics is a superior way to identify phylogenetically conserved features like genes or regions involved in gene regulation. The comparison of extended orthologous chromosomal regions should also reveal other characteristic traits essential for chromosome or gene function. In the present study we have sequenced and compared a region of conserved synteny from human chromosome 11p15.3 and mouse chromosome 7. In human, this region is known to contain several genes involved in the development of various disorders like Beckwith-Wiedemann overgrowth syndrome and other tumor diseases. Furthermore, in the neighboring chromosome region 11p15.5 extensive imprinting of genes has been reported which might extend to region 11p15.3. The analysis of approximately 730 kb in human and 620 kb in mouse led to the identification of eleven genes. All putative genes found in the mouse DNA were also present in the same order and orientation in the human chromosome. However, in the human DNA one putative gene of unknown function could be identified which is not present in the orthologous position of the mouse chromosome. The sequence similarity between human and mouse is higher in transcribed and exon regions than in non-transcribed segments. Dot plot analysis, however, reveals a surprisingly well-conserved sequence similarity over the entire analyzed region. In particular, the positions of CpG islands, short regions of very high GC content in the 5' region of putative genes, are similar in human and mouse. With respect to base composition, two distinct segments of significantly different GC content exist as well in human as in the mouse. With a GC content of 45% the one segment would correspond to "isochore H1" and the other segment (39% GC in human, 40% GC in mouse) to "isochore L1/L2". The gene density (one gene per 66 kb) is slightly higher than the average calculated for the complete human genome (one gene per 90 kb). The comparison of the number and distribution of repetitive elements shows that the proportion of human DNA made up by interspersed repeats (43.8%) is significantly higher than in the corresponding mouse DNA (30.1%). This partly explains why the human DNA is longer between the landmark genes used to define the orthologous positions in human and mouse.
    Cytogenetics and cell genetics 02/2001; 93(3-4):284-90. DOI:10.1159/000056999