Allison M Churcher

University of Victoria, Victoria, British Columbia, Canada

Are you Allison M Churcher?

Claim your profile

Publications (7)46.4 Total impact

  • Source
  • Source
    Allison M Churcher, John S Taylor
    [Show abstract] [Hide abstract]
    ABSTRACT: In vertebrates, olfaction is mediated by several families of G protein-coupled receptors (GPCRs) including odorant receptors (ORs). In this study, we investigated the antiquity of OR genes by searching for amino acid motifs found in chordate ORs among the protein predictions from 12 nonchordate species. Our search uncovered a novel group of genes in the cnidarian Nematostella vectensis. Phylogenetic analysis that included representatives from the other major lineages of rhodopsin-like GPCRs showed that the cnidarian genes, the cephalochordate and vertebrate ORs, and a family of genes from the echinoderm, Strongylocentrotus purpuratus, form a monophyletic clade. The taxonomic distribution of these genes indicates that the formation of this clade and therefore the diversification of the rhodopsin-like GPCR family began at least 700 million years ago, prior to the divergence of cnidarians and bilaterians. ORs and other rhodopsin-like GPCRs have roles in cell migration, axon guidance, and neurite growth; therefore, duplication and divergence in this family may have played a key role in the evolution of cell type diversity (including the emergence of complex nervous systems) and in the evolution of metazoan body plan diversity.
    Genome Biology and Evolution 01/2011; 3:36-43. · 4.76 Impact Factor
  • Source
    Allison M Churcher, John S Taylor
    [Show abstract] [Hide abstract]
    ABSTRACT: A common feature of chemosensory systems is the involvement of G protein-coupled receptors (GPCRs) in the detection of environmental stimuli. Several lineages of GPCRs are involved in vertebrate olfaction, including trace amine-associated receptors, type 1 and 2 vomeronasal receptors and odorant receptors (ORs). Gene duplication and gene loss in different vertebrate lineages have lead to an enormous amount of variation in OR gene repertoire among species; some fish have fewer than 100 OR genes, while some mammals possess more than 1000. Fascinating features of the vertebrate olfactory system include allelic exclusion, where each olfactory neuron expresses only a single OR gene, and axonal guidance where neurons expressing the same receptor project axons to common glomerulae. By identifying homologous ORs in vertebrate and in non-vertebrate chordates, we hope to expose ancestral features of the chordate olfactory system that will help us to better understand the evolution of the receptors themselves and of the cellular components of the olfactory system. We have identified 50 full-length and 11 partial ORs in Branchiostoma floridae. No ORs were identified in Ciona intestinalis. Phylogenetic analysis places the B. floridae OR genes in a monophyletic clade with the vertebrate ORs. The majority of OR genes in amphioxus are intronless and many are also tandemly arrayed in the genome. By exposing conserved amino acid motifs and testing the ability of those motifs to discriminate between ORs and non-OR GPCRs, we identified three OR-specific amino acid motifs common in cephalochordate, fish and mammalian and ORs. Here, we show that amphioxus has orthologs of vertebrate ORs. This conclusion demonstrates that the receptors, and perhaps other components of vertebrate olfaction, evolved at least 550 million years ago. We have also identified highly conserved amino acid motifs that may be important for maintaining receptor conformation or regulating receptor activity. We anticipate that the identification of vertebrate OR orthologs in amphioxus will lead to an improved understanding of OR gene family evolution, OR gene function, and the mechanisms that control cell-specific expression, axonal guidance, signal transduction and signal integration.
    BMC Evolutionary Biology 10/2009; 9:242. · 3.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Comparisons of functionally important changes at the molecular level in model systems have identified key adaptations driving isolation and speciation. In cichlids, for example, long wavelength-sensitive (LWS) opsins appear to play a role in mate choice and male color variation within and among species. To test the hypothesis that the evolution of elaborate coloration in male guppies (Poecilia reticulata) is also associated with opsin gene diversity, we sequenced long wavelength-sensitive (LWS) opsin genes in six species of the family Poeciliidae. Sequences of four LWS opsin genes were amplified from the guppy genome and from mRNA isolated from adult guppy eyes. Variation in expression was quantified using qPCR. Three of the four genes encode opsins predicted to be most sensitive to different wavelengths of light because they vary at key amino acid positions. This family of LWS opsin genes was produced by a diversity of duplication events. One, an intronless gene, was produced prior to the divergence of families Fundulidae and Poeciliidae. Between-gene PCR and DNA sequencing show that two of the guppy LWS opsins are linked in an inverted orientation. This inverted tandem duplication event occurred near the base of the poeciliid tree in the common ancestor of Poecilia and Xiphophorus. The fourth sequence has been uncovered only in the genus Poecilia. In the guppies surveyed here, this sequence is a hybrid, with the 5' end most similar to one of the tandem duplicates and the 3' end identical to the other. Enhanced wavelength discrimination, a possible consequence of opsin gene duplication and divergence, might have been an evolutionary prerequisite for color-based sexual selection and have led to the extraordinary coloration now observed in male guppies and in many other poeciliids.
    BMC Evolutionary Biology 01/2008; 8:210. · 3.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The sequencing of the Strongylocentrotus purpuratus genome provides a unique opportunity to investigate the function and evolution of neural genes. The neurobiology of sea urchins is of particular interest because they have a close phylogenetic relationship with chordates, yet a distinctive pentaradiate body plan and unusual neural organization. Orthologues of transcription factors that regulate neurogenesis in other animals have been identified and several are expressed in neurogenic domains before gastrulation indicating that they may operate near the top of a conserved neural gene regulatory network. A family of genes encoding voltage-gated ion channels is present but, surprisingly, genes encoding gap junction proteins (connexins and pannexins) appear to be absent. Genes required for synapse formation and function have been identified and genes for synthesis and transport of neurotransmitters are present. There is a large family of G-protein-coupled receptors, including 874 rhodopsin-type receptors, 28 metabotropic glutamate-like receptors and a remarkably expanded group of 161 secretin receptor-like proteins. Absence of cannabinoid, lysophospholipid and melanocortin receptors indicates that this group may be unique to chordates. There are at least 37 putative G-protein-coupled peptide receptors and precursors for several neuropeptides and peptide hormones have been identified, including SALMFamides, NGFFFamide, a vasotocin-like peptide, glycoprotein hormones and insulin/insulin-like growth factors. Identification of a neurotrophin-like gene and Trk receptor in sea urchin indicates that this neural signaling system is not unique to chordates. Several hundred chemoreceptor genes have been predicted using several approaches, a number similar to that for other animals. Intriguingly, genes encoding homologues of rhodopsin, Pax6 and several other key mammalian retinal transcription factors are expressed in tube feet, suggesting tube feet function as photosensory organs. Analysis of the sea urchin genome presents a unique perspective on the evolutionary history of deuterostome nervous systems and reveals new approaches to investigate the development and neurobiology of sea urchins.
    Developmental Biology 01/2007; 300(1):434-60. · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes.
    Science 12/2006; 314(5801):941-52. · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes.
    Science. 314(5801):941-52.