Jun Murata

Akita Prefectural University, Akita, Akita-ken, Japan

Are you Jun Murata?

Claim your profile

Publications (7)13.47 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: MUC5AC mucin overproduction is a key feature of asthma as contributes to airway obstruction. The production of MUC5AC is regulated in part by signals from extracellular matrix via integrin pathways, but it remains largely unclear. We investigated the role of Akt, a typical signal transducer in the integrin pathway, in the regulation of MUC5AC production. When NCI-H292 human airway epithelial cells were cultured on laminin or Matrigel, we found that the activity of Akt was suppressed, as compared to control cells with upregulated MUC5AC production. In contrast, Akt was activated in cells cultured on type IV collagen with downregulated MUC5AC production. The Akt inhibitor induced upregulation of MUC5AC. In contrast, overexpression of active Akt induced downregulation of MUC5AC production. These results suggest that a signal from laminin or Matrigel induces upregulation of MUC5AC by suppressing Akt activity, whereas a signal from type IV collagen induces downregulation of MUC5AC, mediated by Akt activation.
    Bioscience Biotechnology and Biochemistry 02/2014; 78(2):212-21. · 1.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, we identified the structurally related homeoproteins EGAM1, EGAM1N, and EGAM1C in both preimplantation mouse embryos and mouse embryonic stem (ES) cells. These EGAM1 homeoproteins act as positive or negative regulators of differentiation and cell growth in mouse ES cells, such that these proteins are considered transcriptional regulators. In this study, we investigated their nuclear localization and identified the amino acid residues crucial for the nuclear translocation of EGAM1 and EGAM1C. When expressed exogenously in pluripotent ES cells and somatic NIH3T3 cells, all EGAM1 homeoproteins localized to the nucleus. Analysis using the web-based tool PSORTII predicted a potential nuclear localization signal (NLS) motif, RKDLIRSWFITQRHR, in the homeodomain shared by EGAM1 and EGAM1C. The introduction of mutations, such as mutations from K or R, both basic amino acid residues, to A, in this potential NLS resulted in significant impairment of the nuclear localization of both EGAM1 and EGAM1C. In contrast, GFP fusion proteins of all the full-length EGAM1 homeoproteins failed to localize to the nucleus. These results, when taken together, suggest that basic amino acid residues in the common homeodomain of EGAM1 and EGAM1C and the intact structures of the EGAM1 homeoproteins contribute, at least in part, to the nuclear localization of these proteins in mouse ES cells.
    Journal of Bioscience and Bioengineering 03/2013; · 1.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In oocyte maturation in Xenopus laevis, nuclear material induces rapid maturation and is required for entry into meiosis II. Nuclear material contains a large number of RNAs and proteins, including histone deacetylase (HDAC); however, it is not known which materials induce accelerated maturation. The HDAC activity modifies transcription rate and is required for normal meiosis; however, its function in oocyte maturation is still unclear. We investigated the function of HDAC activity, which is localized in the nuclear material, in the regulation of the speed of oocyte maturation. Inhibition of HDAC activity with trichostatin A (TSA) induced hyperacetylation of histone H3 and prolonged oocyte maturation. In contrast, increase in HDAC activity with an injection of FLAG-tagged maternal histone deacetylase (HDACm-FLAG) mRNA induced deacetylation of histone H3 and reduced the duration of oocyte maturation. Cdc2 kinase, Cdc25C or mitogen-activated protein kinase (MAPK), which are key regulators of the meiosis, were activated coincidently with maturation progression. In oocytes, the mRNA level of Cdc25C, an activator of Cdc2, was increased by HDACm-FLAG mRNA-injection; in contrast, the mRNA level of Cdc2 inhibitor Wee1 was increased by TSA treatment. These results suggest that HDAC activity is involved in the control of maturation speed through the regulation of mRNA levels of cell cycle regulators. Thus, HDACm is a candidate for the nuclear material component that induces rapid maturation in Xenopus oocytes.
    Embryologia 01/2013; · 2.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The homeoprotein EGAM1C was identified in preimplantation mouse embryos and embryonic stem (ES) cells. To explore the impact of EGAM1C on the hallmarks of mouse ES cells, MG1.19 cells stably expressing EGAM1C at levels similar to those in blastocysts were established using an episomal expression system. In the presence of leukemia inhibitory factor (+LIF), control transfectants with an empty vector formed flattened cell colonies, while Egam1c transfectants formed compacted colonies with increased E-CADHERIN expression. In Egam1c transfectants, the cellular contents of POU5F1 (OCT4), SOX2, TBX3, and NANOG increased. Cell growth was accelerated in an undifferentiated state sustained by LIF and in the course of differentiation. During clonal proliferation, EGAM1C stabilized the undifferentiated state. In adherent culture conditions, EGAM1C partly inhibited the progression of differentiation at least within a 4-day culture period in the presence of retinoic acid by preventing the downregulation of LIF signaling with a robust increase in TBX3 expression. Conversely, EGAM1C enhanced the expression of lineage marker genes Fgf5 (epiblast), T (mesoderm), Gata6 (primitive endoderm), and Cdx2 (trophectoderm) in -LIF conditions. In embryoid bodies expressing EGAM1C, the expression of marker genes for extraembryonic cell lineages, including Tpbpa (spongiotrophoblast) and Plat (parietal endoderm), increased. These results demonstrated that the ectopic expression of EGAM1C is capable of affecting the stabilization of an undifferentiated state and the progression of differentiation in MG1.19 ES cells, in addition to affecting cellular morphology and growth.
    Reproduction 02/2012; 143(4):477-89. · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mucin production by epithelial cells is modulated by many soluble factors, including epidermal growth factor (EGF). E-Cadherin promotes EGF receptor (EGFR)-mediated MUC5AC mucin production in airway epithelial cells in dense cultures, suggesting the involvement of E-cadherin in activating EGFRs and mucin production. However, the role of E-cadherin in modulating mucin production is not completely understood. We examined its role in MUC5AC production in a human lung epithelial cell line, NCI-H292. Treatment of low density NCI-H292 cells with an anti-E-cadherin monoclonal antibody (SHE78-7) inhibited cell-cell contact in the dispersed colonies, but promoted MUC5AC production. Furthermore, treatment of the NCI-H292 cells with anti-E-cadherin antibody stimulated phosphorylation of extracellular signal-regulated kinase (ERK). The enhanced production of MUC5AC was inhibited with an EGFR inhibitor and with a MEK inhibitor, but not with a Src family kinase inhibitor. These results suggest that inhibition of E-cadherin activates EGFRs independently of Src and promotes MUC5AC production through the ERK signaling pathway in sparsely cultured NCI-H292 cells.
    Bioscience Biotechnology and Biochemistry 05/2011; 75(4):688-93. · 1.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Histone deacetylase (HDAC) inhibitors have anticancer effects. Their effects on expression of cell adhesion molecules might be related to their effects on tumor cell invasion. Murine B16-BL6 cells were treated with the HDAC inhibitors, butyrate or trichostatin A. Melanoma cell invasion of the artificial basement membrane, Matrigel, was examined by Transwell chamber assay. Butyrate as well as trichostatin A inhibited the cell growth mainly by arresting the cell cycle. The cell invasion of Matrigel was inhibited by butyrate and trichostatin A. The butyrate treatment increased the cell-cell aggregation, although neither E-cadherin nor N-cadherin mRNA were up-regulated. Both mRNA expression and protein levels of the immunoglobulin superfamily cell adhesion molecules, Mel-CAM and L1-CAM, were increased in the butyrate-treated cells. The HDAC inhibitor butyrate blocked the B16-BL6 melanoma cell invasion of Matrigel, although it increased the expression of Mel-CAM and L1-CAM which are important to the metastatic potential.
    Anticancer research 01/2007; 27(6B):4163-9. · 1.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The activity of tyrosine kinases, although strictly regulated in normal cells, is often disturbed in cancer cells. The inhibition of a tyrosine kinase could be a target for treating cancer. The colon cancer cell lines LS174T and HT-29 and the lung cancer cell line NCI-H292 were used. The cells were incubated with 100 microM of the tyrosine kinase inhibitor AG490 for 1-3 days and were examined for growth. Extracellular signal-regulated kinase (ERK) activation was detected by anti-phospho ERK antibodies. The cell cycle was analyzed by flow cytometry. AG490 inhibited the growth of LS174T, HT-29 and NCI-H292 cells without inducing apoptosis. Short-term treatment with AG490 activated ERK and p38 MAPK in the LS174T and HT-29 cells, but not in NCI-H292 cells. ERK activation, however, was unrelated to the growth inhibition in LS174T cells, because the inhibition persisted even after the prevention of ERK activation. AG490 inhibits the growth of some cancer cells and activates ERK in LS174T and HT-29 cells. ERK activation is unrelated to growth inhibition.
    Anticancer research 01/2006; 26(2A):1085-90. · 1.71 Impact Factor