A A A Jacobs

Wageningen University, Wageningen, Provincie Gelderland, Netherlands

Are you A A A Jacobs?

Claim your profile

Publications (9)10.25 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Stearoyl-CoA desaturase (SCD) in the bovine mammary gland introduces a cis-double bond at the Δ9 position in a wide range of fatty acids (FA). Several long-chain polyunsaturated fatty acids (PUFA) inhibit expression of SCD, but information on the effect of short-chain fatty acids on mammary SCD expression is scarce. We used a bovine mammary cell line (MAC-T) to assess the effect of acetic acid (Ac) and β-hydroxybutyric acid (BHBA) in comparison with the effect of various long-chain fatty acids on the mRNA expression of the lipogenic enzymes SCD, acetyl-CoA carboxylase (ACACA), fatty acid synthase (FASN) and their associated gene regulatory proteins sterol regulatory element binding transcription factor 1 (SREBF1), insulin-induced gene 1 protein (INSIG1) and peroxisome proliferator-activated receptor alpha (PPARA)and peroxisome proliferator-activated receptor delta (PPARD) by quantitative real-time PCR. MAC-T cells were treated for 12 h without FA additions (CON) or with either 5 mM Ac, 5 mM BHBA, a combination of 5 mM Ac + 5 mM BHBA, 100 μM C16:0, 100 μM C18:0, 100 μM C18:1 cis-9, 100 μM C18:1 trans-11, 100 μM C18:2 cis-9,12 or 100 μM C18:3 cis-9,12,15. Compared with control, mRNA expression of SCD1 was increased by Ac (+61%) and reduced by C18:1 cis-9 (-61%), C18:2 cis-9,12 (-84%) and C18:3 cis-9,12,15 (-88%). In contrast to native bovine mammary gland tissue, MAC-T cells did not express SCD5. Expression of ACACA was increased by Ac (+44%) and reduced by C18:2 cis-9,12 (-48%) and C18:3 cis-9,12,15 (-49%). Compared with control, FASN expression was not significantly affected by the treatments. The mRNA level of SREBF1 was not affected by Ac or BHBA, but was reduced by C18:1 cis-9 (-44%), C18:1 trans-11 (-42%), C18:2 cis-9,12 (-62%) and C18:3 cis-9,12,15 (-68%) compared with control. Expression of INSIG1 was downregulated by C18:0 (-37%), C18:1 cis-9 (-63%), C18:1 trans-11 (-53%), C18:2 cis-9,12 (-81%) and C18:3 cis-9,12,15 (-91%). Both PPARA and PPARD expression were not significantly affected by the treatments. Our results show that Ac upregulated mRNA expression of SCD1 and ACACA in MAC-T cells. The opposite effect of the PUFA C18:2 cis-9,12 and C18:3 cis-9,12,15 on the these genes and the failure of Ac to mimic the PUFA-inhibited SREBF1 and INSIG1 mRNA expression, suggest that Ac can stimulate mammary lipogenesis via a transcriptional regulatory mechanism different from PUFA.
    animal 04/2013; · 1.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In reproductive swards, stems can act as a barrier that affects the grazing behaviour of ruminant livestock. The barrier effect of stems is closely associated with both the force required to fracture the stems and the density of these stems (in combination, these make up grazing resistance), and these factors need to be considered when making predictions about the forage intake of ruminants grazing reproductive pastures. Differences in grazing resistance between sward canopy layers of different grass species are thought to affect bite dimensions, but data are scarce. In this study, we assessed the grazing resistance for three canopy layers of seven tropical grass species. Species differed significantly in grazing resistance for every canopy layer, with a general ranking order for grazing resistance, in ascending order: Cenchrus ciliaris (‘American' buffel), Digitaria milanjiana (‘Jarra’ finger grass), Setaria surgens (annual pigeon grass), Setaria sphacelata (‘Narok’ setaria), Dichanthium sericeum (Queensland bluegrass), Chloris gayana (‘Callide’ Rhodes grass). In the top canopy layer, grazing resistance did not appear to create a barrier for any of the species, but in the bottom canopy layer, it did for all species. Species also differed in the relative contribution of fracture force and density to grazing resistance. The results highlight the importance of managing the grazing systems to minimize the barrier effect of the stems, which can be done by controlling the phenological stage of the pasture and the grass species and animal size used in the system.
    Grass and Forage Science 01/2013; 68(2). · 1.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stearoyl-CoA desaturase (SCD) is an important enzyme in the bovine mammary gland, where it inserts a cis-double bond at the Δ9 position in a wide range of fatty acids. Investigating SCD expression in the bovine mammary gland generally requires invasive biopsy to obtain mammary tissue. The aim of this study was to evaluate the use of milk somatic cells as a non-invasive alternative to biopsy for measuring mammary SCD expression in dairy cows. Both milk somatic cells and mammary tissue were collected from 14 Holstein-Friesian cows and used for analysis of SCD expression by real-time PCR. The SCD5 mRNA levels in mammary tissue compared with SCD1 were low, and for several milk somatic cell samples, SCD5 expression was even below the limit of detection. A significant relationship was found between SCD1 expression in milk somatic cells and in mammary tissue. In addition, SCD1 expression in milk somatic cells was significantly related to Δ9-desaturase indices in milk, which are commonly used as an indicator of SCD1 activity within the mammary gland. Our study showed that milk somatic cells can be used as a source of mRNA to study SCD1 expression in dairy cows, offering a non-invasive alternative to mammary tissue samples obtained by biopsy.
    J Anim Physiol a Anim Nutr 02/2012; · 1.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The intake of forage grasses by grazing ruminants is closely related to the mechanical fracture properties of grasses. The relationship between the tensile fracture properties of grasses and foraging behaviour is of particular importance in tropical reproductive swards composed of both stems and leaves. This study (i) quantified and compared the tensile fracture properties of stems and leaves of seven tropical grass species and (ii) provided insight into the underlying plant traits that explain differences in fracture properties between species. Fracture force, tensile strength, fracture energy and toughness of stems (in various phenological stages) and leaves were measured and compared among five introduced tropical grasses (Cenchrus ciliaris, Chloris gayana, Digitaria milanjiana, Megathyrsus maximus (syn. Panicum maximum), Setaria sphacelata) and two native tropical grasses (Setaria surgens and Dichanthium sericeum). Species differed significantly in fracture force and fracture energy, with stems and leaves of C. ciliaris and S. surgens requiring less force and energy to fracture and stems and leaves of M. maximus and S. sphacelata requiring more force and energy to fracture in comparison with the other species. Differences in tensile strength and toughness were less pronounced. The differences among species in fracture force and energy mainly resulted from differences in cross-sectional area of plant parts rather than from differences in tensile strength and toughness.
    Grass and Forage Science 07/2011; 66(4):551 - 559. · 1.57 Impact Factor
  • Source
    N Mach, A A A Jacobs, L Kruijt, J van Baal, M A Smits
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to determine the effects of supplementing unprotected dietary unsaturated fatty acids (UFAs) from different plant oils on gene expression in the mammary gland of grazing dairy cows. A total of 28 Holstein-Friesian dairy cows in mid-lactation were blocked according to parity, days in milk, milk yield and fat percentage. The cows were then randomly assigned to four UFA sources based on rapeseed, soybean, linseed or a mixture of the three oils for 23 days, after which, all 28 cows were switched to a control diet for an additional 28 days. On the last day of both periods, mammary gland biopsies were taken to study genome-wide differences in gene expression on Affymetrix GeneChip® Bovine Genome Arrays (no. 900493) by ServiceXS (Leiden, The Netherlands). Supplementation with UFAs resulted in increased milk yield but decreased milk fat and protein percentages. Furthermore, the proportion of de novo fatty acids (FAs) in the milk was reduced, whereas that of long-chain FAs increased. Applying a statistical cut-off of false discovery rate of q-values <0.05 together with an absolute fold change of 1.3, a total of 972 genes were found to be significantly affected through UFA supplementation, indicating that large transcriptional adaptations occurred in the mammary gland when grazing dairy cows were supplemented with unprotected dietary UFA. Gene sets related to cell development and remodeling, apoptosis, nutrient metabolic process, as well as immune system response were predominantly downregulated during UFA supplementation. Such molecular knowledge on the physiology of the mammary gland might provide the basis for further functional research on dairy cows.
    animal 06/2011; 5(8):1217-30. · 1.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stearoyl-CoA desaturase (SCD) is an important enzyme in the bovine mammary gland, and it introduces a double bond at the Δ(9) location of primarily myristoyl-, palmitoyl-, and stearoyl-CoA. The main objective of this study was to compare the effects of various fatty acids (FA) typically present in dairy cow rations on the expression of SCD1 and SCD5 in the mammary gland of dairy cows. Twenty-eight Holstein-Friesian cows were randomly assigned to 1 of 4 dietary treatments. The dietary treatments were a basal diet supplemented (dry matter basis) with 2.7% rapeseed oil as a source of C18:1 cis-9; 2.7% soybean oil as a source of C18:2 cis-9,12; 2.7% linseed oil as a source of C18:3 cis-9,12,15; or 2.7% of a 1:1:1 mixture of the 3 oils. The oil supplements were included in the concentrate, which was fed together with corn silage and grass silage. In addition, cows were grazing on pasture, consisting mainly of perennial ryegrass, during the day. Biopsies from the mammary gland were taken and analyzed for mRNA expression of SCD1 and SCD5 by using quantitative real-time PCR. Milk yield as well as milk protein and fat contents did not differ among the 4 dietary treatments. Dietary supplementation with rapeseed oil and linseed oil increased proportions of C18:1 cis-9 and C18:3 cis-9,12,15 in blood plasma, respectively, compared with the other treatments. Supplementation with soybean oil and linseed oil increased milk FA proportions of C18:2 cis-9,12 and C18:3 cis-9,12,15, respectively, but supplementation with rapeseed oil did not increase C18:1 cis-9 in milk. Mammary SCD1 expression was reduced by supplementation of soybean oil compared with rapeseed oil and linseed oil. In contrast, SCD5 expression did not differ among the 4 treatments. The C16 and C18 desaturation indices, representing proxies for SCD activity, were lower for the soybean oil diet compared with the diet supplemented with a mixture of the 3 oils. In conclusion, our study shows that mammary SCD1 expression is significantly downregulated in dairy cows by feeding unprotected soybean oil compared with rapeseed oil or linseed oil, and this is partially reflected by the lower desaturase indices in the milk. Furthermore, mammary SCD5 expression appears to be differently regulated than expression of SCD1.
    Journal of Dairy Science 02/2011; 94(2):874-87. · 2.57 Impact Factor
  • 01/2007;
  • A.A.A. Jacobs, Vuuren, A.M, Baal, Hengel, van de, J. Dijkstra
    [Show abstract] [Hide abstract]
    ABSTRACT: Extensive biohydrogenation of dietary fatty acids (FA) occurs in the rumen of dairy cattle, giving rise to a high proportion of saturated FA in milk fat. Saturated FA may contribute to increased risks of cardiovascular disease and the metabolic syndrome (Williams, 2000). Saturated FA, as well as several mono-unsaturated FA, can be desaturated by Δ9-desaturase, also known as stearoyl-CoA desaturase (SCD), present in the mammary gland of dairy cows. It is known that nutrition, especially polyunsaturated FA (PUFA), can affect the expression of SCD in rodents (Ntambi, 1999). Although various FA have been identified which can affect mammary SCD expression in dairy cattle, such knowledge is limited compared with rodents. Therefore, the objective of this study was to investigate the effect of dietary FA supplementation of C18:1 cis-9, C18:2 cis-9,12 or C18:3 cis-9,12,15, by feeding rapeseed oil, soybean oil or linseed oil respectively, or its mixture, on SCD expression in the mammary gland of dairy cows.