Victoria J Heath

University of Glasgow, Glasgow, Scotland, United Kingdom

Are you Victoria J Heath?

Claim your profile

Publications (9)70.77 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transforming growth factor beta (TGFbeta)-stimulated clone-22 domain family member 1 (TSC-22D1) has previously been associated with enhanced apoptosis in several cell systems. In an attempt to identify novel factors that are involved in the control of cell death during mammary gland involution, we found that the mRNA for isoform 2 of TSC-22D1 was highly upregulated 24 h after forced weaning, when a dramatic increase in cell death occurred, closely following the expression of the known inducer of cell death during involution, TGFbeta3. This was paralleled by strongly increased TSC-22D1 isoform 2 protein levels in the luminal epithelium. In contrast, RNA and protein expression levels of the isoform 1 of TSC-22D1 did not change during development. Whereas isoform 2 induced cell death, isoform 1 suppressed TGFbeta-induced cell death and enhanced proliferation in mammary epithelial cell lines. Furthermore, four distinct forms of isoform 2 protein were detected in the mammary gland, of which only a 15-kDa form was associated with early involution. Our data describe novel opposing functions of the two mammalian TSC-22D1 isoforms in cell survival and proliferation, and establish the TSC-22D1 isoform 2 as a potential regulator of cell death during mammary gland involution.
    Cell death and differentiation 10/2009; 17(2):304-15. · 8.24 Impact Factor
  • Source
    Breast Cancer Research 01/2008; 10:1-1. · 5.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mammary morphogenesis in the mouse is driven by specialized structures at the ends of the developing ducts, the terminal end buds (TEB). The mechanisms controlling the precise branching and spacing of the ducts are, as yet, unknown. To identify genes that are associated with migration of TEB and differentiation of the subtending ducts, we developed a novel method of isolating TEB and ducts free of stroma, and compared the gene expression profiles of these two isolates using oligonucleotide microarrays. Ninety one genes were upregulated in TEB compared to ducts. Three of these genes, Sprr1A, Sema3B, and BASP1, are associated with axonal growth and guidance. Two additional members of the Sprr family, Sprr2A and 2B, not previously associated with axonal growth, were also highly expressed in TEB. Expression of these genes was confirmed by RT-PCR and Western blotting, and the cellular distribution of Sprr1A and BASP1 was demonstrated by immunohistochemistry. Other semaphorins, including Sema3C, 4A, 4F and the cancer invasion associated Sema 4D were also expressed in the mouse mammary gland along with the semaphorin receptors, Plexins A2, A3, B2, and D1, and Neuropilins 1 and 2. These results are discussed in the context of other proteins expressed in the developing gland that are known to be downstream effectors of these signaling molecules. We suggest that these genes may influence ductal growth and morphogenesis in the developing mammary gland.
    Journal of Cellular Physiology 02/2006; 206(1):16-24. · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microarray studies have linked Annexin A8 RNA expression to a "basal cell-like" subset of breast cancers, including BRCA1-related cancers, that are characterized by cytokeratin 5 (CK5) and CK17 expression and show poor prognosis. We assessed Annexin A8's contribution to the overall prognosis and its expression in normal, benign, and cancerous tissue and addressed Annexin A8's physiologic role in the mammary gland. Using microarrays and reverse transcription-PCR, the Annexin A8 expression was studied during mouse mammary gland development and in isolated mammary structures. Reverse transcription-PCR on cultured human luminal and basal cells, along with immunocytochemistry on normal and benign breast tissues, was used for cellular localization. Annexin A8's prognostic relevance and its coexpression with CK5 were assessed on tissue arrays of 1,631 cases of invasive breast cancer. Coexpression was further evaluated on a small cohort of 14 BRCA1-related breast cancers. Annexin A8 was up-regulated during mouse mammary gland involution and in pubertal ductal epithelium. Annexin A8 showed preferred expression in cultured basal cells but predominant luminal expression in normal human breast tissue in vivo. Hyperplasias and in situ carcinomas showed a strong staining of basal cells. Annexin A8 expression was significantly associated with grade (P < 0.0001), CK5 (P < 0.0001), and estrogen receptor status (P < 0.0001); 85.7% BRCA1-related breast tumors coexpressed Annexin A8 and CK5. Annexin A8 is involved in mouse mammary gland involution. In humans, it is a luminally expressed protein with basal expression in cell culture and in hyperplasia/ductal carcinoma in situ. Expression in invasive breast carcinomas has a significant effect on survival (P = 0.03) but is not independent of grade or CK5.
    Clinical Cancer Research 10/2005; 11(19 Pt 1):6872-9. · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent publications have classified breast cancers on the basis of expression of cytokeratin-5 and -17 at the RNA and protein levels, and demonstrated the importance of these markers in defining sporadic tumours with bad prognosis and an association with BRCA1-related breast cancers. These important observations using different technology platforms produce a new functional classification of breast carcinoma. However, it is important in developing hypotheses about the pathogenesis of this tumour type to review the nomenclature that is being used to emphasize potential confusion between terminology that defines clinical subgroups and markers of cell lineage. This article reviews the lineages in the normal breast in relation to what have become known as the 'basal-like' carcinomas.
    Breast cancer research: BCR 02/2005; 7(4):143-8. · 5.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Involution of the mammary gland is a complex process of controlled apoptosis and tissue remodelling. The aim of the project was to identify genes that are specifically involved in this process. We used Affymetrix oligonucleotide microarrays to perform a detailed transcript analysis on the mechanism of controlled involution after withdrawal of the pups at day seven of lactation. Some of the results were confirmed by semi-quantitative reverse transcriptase polymerase chain reaction, Western blotting or immunohistochemistry. We identified 145 genes that were specifically upregulated during the first 4 days of involution; of these, 49 encoded immunoglobulin genes. A further 12 genes, including those encoding the signal transducer and activator of transcription 3 (STAT3), the lipopolysaccharide receptor (CD14) and lipopolysaccharide-binding protein (LBP), were involved in the acute-phase response, demonstrating that the expression of acute-phase response genes can occur in the mammary gland itself and not only in the liver. Expression of LBP and CD14 was upregulated, at both the RNA and protein level, immediately after pup withdrawal; CD14 was strongly expressed in the luminal epithelial cells. Other genes identified suggested neutrophil activation early in involution, followed by macrophage activation late in the process. Immunohistochemistry and histological staining confirmed the infiltration of the involuting mammary tissue with neutrophils, plasma cells, macrophages and eosinophils. Oligonucleotide microarrays are a useful tool for identifying genes that are involved in the complex developmental process of mammary gland involution. The genes identified are consistent with an immune cascade, with an early acute-phase response that occurs in the mammary gland itself and resembles a wound healing process.
    Breast cancer research: BCR 02/2004; 6(2):R75-91. · 5.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intact p73 function is shown to be an important determinant of cellular sensitivity to anticancer agents. Inhibition of p73 function by dominant-negative proteins or by mutant p53 abrogates apoptosis and cytotoxicity induced by these agents. A polymorphism encoding either arginine (72R) or proline (72P) at codon 72 of p53 influences inhibition of p73 by a range of p53 mutants identified in squamous cancers. Clinical response following cisplatin-based chemo-radiotherapy for advanced head and neck cancer is influenced by this polymorphism, cancers expressing 72R mutants having lower response rates than those expressing 72P mutants. Polymorphism in p53 may influence individual responsiveness to cancer therapy.
    Cancer Cell 05/2003; 3(4):387-402. · 24.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vitro studies have identified 14-3-3sigma as a regulator of senescence in human keratinocytes. To assess its contribution to squamous neoplasia, we have analyzed genetic and epigenetic changes in this gene in squamous cell carcinomas (SCCs) and dysplastic lesions of the oral cavity. No mutations were detected in the coding sequence of 14-3-3sigma in 20 oral carcinomas, and there was loss of heterozygosity in only 7 of 40 informative cases. In contrast to the absence of genetic change, aberrant methylation within 14-3-3sigma was detected in 32 of 92 squamous cell carcinomas and in 3 of 6 oral dysplasias and was associated with reduced or absent expression at both mRNA and protein levels. Methylation was not detected in matched, normal epithelial tissue controls. Carcinomas in which 14-3-3sigma was methylated were significantly more likely to lack DNA sequences from human papillomavirus and to have coincident methylation of p16(INK4a) than cases that expressed 14-3-3sigma. Methylation was detected in SCC, both wild-type and mutant for p53, but was more commonly detected in cancers with wild-type p53. These results implicate coincident epigenetic abrogation of function in both sigma and p16(INK4a) in a subset of SCCs of the oral cavity.
    Cancer Research 05/2002; 62(7):2072-6. · 8.65 Impact Factor