J. E. Thomas-Osip

Aarhus University, Aarhus, Central Jutland, Denmark

Are you J. E. Thomas-Osip?

Claim your profile

Publications (53)132.81 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In classical P-Cygni profiles, theory predicts emission to peak at zero rest velocity. However, supernova spectra exhibit emission that is generally blue shifted. While this characteristic has been reported in many supernovae, it is rarely discussed in any detail. Here we present an analysis of Hα emission-peaks using a dataset of 95 type II supernovae, quantifying their strength and time evolution. Using a post-explosion time of 30 d, we observe a systematic blueshift of Hα emission, with a mean value of –2000 km s −1 . This offset is greatest at early times but vanishes as supernovae become nebular. Simulations of Dessart et al. (2013) match the observed behaviour, reproducing both its strength and evolution in time. Such blueshifts are a fundamental feature of supernova spectra as they are intimately tied to the density distri-bution of ejecta, which falls more rapidly than in stellar winds. This steeper density structure causes line emission/absorption to be much more confined; it also exacerbates the occultation of the receding part of the ejecta, biasing line emission to the blue for a distant observer. We conclude that blue-shifted emission-peak offsets of several thousand km s −1 are a generic property of observations, confirmed by models, of photospheric-phase type II supernovae.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a spectroscopic analysis of the Hα profiles of hydrogen-rich type II supernovae. A total of 52 type II supernovae having well sampled optical light curves and spectral sequences were analyzed. Concentrating on the Hα P-Cygni profile we measure its velocity from the FWHM of emission and the ratio of absorption to emission (a/e) at a common epoch at the start of the recombination phase, and search for correlations between these spectral parameters and photometric properties of the V -band light curves. Testing the strength of various correlations we find that a/e appears to be the dominant spectral parameter in terms of describing the diversity in our measured supernova properties. It is found that supernovae with smaller a/e have higher Hα velocities, more rapidly declining light curves from maximum, during the plateau and radioactive tail phase, are brighter at maximum light and have shorter optically thick phase durations. We discuss possible explanations of these results in terms of physical properties of type II supernovae, speculating that the most likely parameters which influence the morphologies of Hα profiles are the mass and density profile of the hydrogen envelope, together with additional emission components due to circumstellar interaction.
    The Astrophysical Journal Letters 03/2014; · 6.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an analysis of the diversity of V-band light-curves of hydrogen-rich type II supernovae. Analyzing a sample of 116 supernovae, several magnitude measurements are defined, together with decline rates at different epochs, and time durations of different phases. It is found that magnitudes measured at maximum light correlate more strongly with decline rates than those measured at other epochs: brighter supernovae at maximum generally have faster declining light-curves at all epochs. We find a relation between the decline rate during the 'plateau' phase and peak magnitudes, which has a dispersion of 0.56 magnitudes, offering the prospect of using type II supernovae as purely photometric distance indicators. Our analysis suggests that the type II population spans a continuum from low-luminosity events which have flat light-curves during the 'plateau' stage, through to the brightest events which decline much faster. A large range in optically thick phase durations is observed, implying a range in progenitor envelope masses at the epoch of explosion. During the radioactive tails, we find many supernovae with faster declining light-curves than expected from full trapping of radioactive emission, implying low mass ejecta. It is suggested that the main driver of light-curve diversity is the extent of hydrogen envelopes retained before explosion. Finally, a new classification scheme is introduced where hydrogen-rich events are typed as simply 'SNII' with an s2 value giving the decline rate during the 'plateau' phase, indicating its morphological type.
    The Astrophysical Journal 03/2014; 786(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In classical P-Cygni profiles, theory predicts emission to peak at zero rest velocity. However, supernova spectra exhibit emission that is generally blue shifted. While this characteristic has been reported in many supernovae, it is rarely discussed in any detail. Here we present an analysis of H-alpha emission-peaks using a dataset of 95 type II supernovae, quantifying their strength and time evolution. Using a post-explosion time of 30d, we observe a systematic blueshift of H-alpha emission, with a mean value of -2000 kms-1. This offset is greatest at early times but vanishes as supernovae become nebular. Simulations of Dessart et al. (2013) match the observed behaviour, reproducing both its strength and evolution in time. Such blueshifts are a fundamental feature of supernova spectra as they are intimately tied to the density distribution of ejecta, which falls more rapidly than in stellar winds. This steeper density structure causes line emission/absorption to be much more confined; it also exacerbates the occultation of the receding part of the ejecta, biasing line emission to the blue for a distant observer. We conclude that blue-shifted emission-peak offsets of several thousand kms-1 are a generic property of observations, confirmed by models, of photospheric-phase type II supernovae.
    03/2014; 441(1).
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a spectroscopic analysis of the H-alpha profiles of hydrogen-rich type II supernovae. A total of 52 type II supernovae having well sampled optical light curves and spectral sequences were analyzed. Concentrating on the H-alpha P-Cygni profile we measure its velocity from the FWHM of emission and the ratio of absorption to emission (a/e) at a common epoch at the start of the recombination phase, and search for correlations between these spectral parameters and photometric properties of the V-band light curves. Testing the strength of various correlations we find that a/e appears to be the dominant spectral parameter in terms of describing the diversity in our measured supernova properties. It is found that supernovae with smaller a/e have higher H-alpha velocities, more rapidly declining light curves from maximum, during the plateau and radioactive tail phase, are brighter at maximum light and have shorter optically thick phase durations. We discuss possible explanations of these results in terms of physical properties of type II supernovae, speculating that the most likely parameters which influence the morphologies of H-alpha profiles are the mass and density profile of the hydrogen envelope, together with additional emission components due to circumstellar interaction.
    02/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to guide the adaptive optics design and aid in performance predictions, optical turbulence at the site of the future Giant Magellan Telescope (GMT) is characterized using MooSci, a lunar scintillometer, and MASS-DIMM, a combination differential image motion monitor and multiaperture scintillation sensor. As a new instrument, MooSci, is verified as a reliable ground-layer turbulence profiler. The GMT can expect an improvement of approximately 0.1″ over the site testing results as measured with a DIMM. Turbulence below 30 m is horizontally nonhomogeneous, dependent on wind speed and direction, and on average accounts for 60% of the full ground-layer (up to 500 m) turbulence.
    Publications of the Astronomical Society of the Pacific 01/2012; · 3.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To develop next generation telescopes and adaptive optics (AO) systems, it is crucial to understand the characteristics of an astronomical site. Lunar scintillometers are an important tool to aid in this understanding. These instruments are able to measure atmospheric turbulence and its effect on astronomical seeing at the ground layer where telescope and observatory design play a role. Here we describe a new lunar scintillometer, MooSci, to aid in the site characterization campaign for the Giant Magellan Telescope (GMT). MooSci has been tested and confirmed to provide reliable data for the reconstruction of turbulence profiles.
    12/2011; 219.
  • G. Prieto, A. Berdja, J. E. Thomas-Osip
    [Show abstract] [Hide abstract]
    ABSTRACT: We report preliminary results from Near-Ground optical turbulence measurements carried out at Cerro Las Campanas, the future site of the Giant Magellan Telescope (GMT), using MooSci (Moon Scintillomenter), DIMM (Differential Image Motion Monitor) and MASS (Multiple Aperture Scintillation Sensor), focusing on the effects above the future GMT enclosure. This campaign will continue with future observations of the NGL turbulence in order to better model the adaptive optics performance and aid in the design of the GMT AO instrumentation
    11/2011;
  • A. Berdja, G. Prieto, J. E. Thomas-Osip
    [Show abstract] [Hide abstract]
    ABSTRACT: We report preliminary results from optical turbulence measurements carried out in 2010 at Cerro Las Campanas, the future site for the Giant Magellan Telescope (GMT). The instruments involved are MooSci, a lunar scintillometer for the near-ground optical turbulence profile, Differential Image Motion Monitor (DIMM) for the whole atmosphere total seeing, and MASS Multiple Aperture Scintillation Sensor (MASS) for high-altitude optical turbulence estimation. The main purpose of these measurements is to anticipate the optical turbulence strength above the future GMT enclosure, and to provide a means to model the future adaptive optics performance. We also discuss the significance of such a combination of instruments and some hypothetical limitations.
    Monthly Notices of the Royal Astronomical Society 07/2011; 416(1):553 - 558. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerro Las Campanas located at Las Campanas Observatory (LCO) in Chile has been selected as the site for the Giant Magellan Telescope. We report results obtained since the commencement, in 2005, of a systematic site testing survey of potential GMT sites at LCO. Meteorological (cloud cover, temperature, pressure, wind, and humidity) and DIMM seeing data have been obtained at three potential sites, and are compared with identical data taken at the site of the twin Magellan 6.5m telescopes. In addition, measurements of the turbulence profile of the free-atmosphere above LCO have been collected with a MASS/DIMM. Furthermore, we consider photometric quality, light pollution, and precipitable water vapor (PWV). LCO, and Co. Las Campanas in particular, have dark skies, little or no risk of future light pollution, excellent seeing, moderate winds, PWV adequate for mid-IR astronomy during a reasonable fraction of the nights, and a high fraction of clear nights overall. Finally, Co. Las Campanas meets or exceeds all the defined science requirements.
    Proc SPIE 01/2011;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cerro Las Campanas located at Las Campanas Observatory (LCO) in Chile has been selected as the site for the Giant Magellan Telescope. We report results obtained since the commencement, in 2005, of a systematic site testing survey of potential GMT sites at LCO. Atmospheric precipitable water vapor (PWV) adversely impacts mid-IR astronomy through reduced transparency and increased background. Prior to the GMT site testing effort, little was known regarding the PWV characteristics at LCO and therefore, a multi-pronged approach was used to ensure the determination of the fraction of the time suitable for mid-IR observations. High time resolution monitoring was achieved with an Infrared Radiometer for Millimeter Astronomy (IRMA) from the University of Lethbridge deployed at LCO since September of 2007. Absolute calibrations via the robust Brault method (described in Thomas-Osip et al.1) are provided by the Magellan Inamori Kyocera Echelle (MIKE), mounted on the Clay 6.5-m telescope on a timescale of several per month. We find that conditions suitable for mid-IR astronomy (PWV < 1.5 mm) are concentrated in the southern winter and spring months. Nearly 40% of clear time during these seasons have PWV < 1.5mm. Approximately 10% of these nights meet our PWV requirement for the entire night.
    Proc SPIE 07/2010;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cerro Las Campanas located at Las Campanas Observatory in Chile has been selected as the site for the Giant Magellan Telescope. We report results obtained since the commencement, in 2005, of a systematic site testing survey of potential GMT sites at LCO. Seeing data have been obtained at three potential sites, and are compared with identical data taken at the site of the twin Magellan 6.5m telescopes. In addition, measurements of the turbulence profile of the free-atmosphere have been collected. Co. Las Camapanas and the Magellan site are nearly identical in their seeing statistics, and apparently their average ground-layer characteristics.
    Proc SPIE 07/2010;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The European Southern Observatory (ESO), the Institute for Space Imaging Science (ISIS) and the AstroMeteorology group at the Universidad de Valparaiso collaborated on a project to understand the precipitable water vapour (PWV) over the La Silla Paranal Observatory. Both La Silla and Paranal were studied with the goal of using them as reference sites to evaluate potential E-ELT sites. As ground-based infrared astronomy matures, our understanding of the atmospheric conditions over the observatories becomes paramount, specifically water vapour since it is the principle source of atmospheric opacity at infrared wavelengths. Several years of archival optical spectra (FEROS) have been analysed to reconstruct the PWV history above La Silla using an atmospheric radiative transfer model (BTRAM) developed by ISIS. In order to better understand the systematics involved, a dedicated atmospheric water vapour measurement campaign was conducted in May 2009 in close collaboration with Las Campanas observatory and the GMT site testing team. Several methods of determining the water column were employed, including radiosonde launches, continuous measurements by infrared radiometers (IRMA), a compact echelle spectrograph (BACHES) and several high-resolution optical echelle spectrographs (FEROS, HARPS and MIKE). All available observations were compared to concurrent satellite estimates of water vapour in an attempt to ground-truth the satellite data. We present a comparison of the methods used, and results from the archival study and measurement campaign. A mean PWV of 3.4 ± 2.4 mm is found for La Silla using FEROS data covering the period 2005-2009. Important lessons on the strengths and limitations of satellite data are presented. The value of a stand-alone high time resolution PWV monitor has been demonstrated in the context of parallel observations from Las Campanas and La Silla.
    Proc SPIE 07/2010;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Optical and near-infrared photometry and optical spectroscopy are reported for SN 2003bg, starting a few days after explosion and extending for a period of more than 300 days. Our early-time spectra reveal the presence of broad, high-velocity Balmer lines. The nebular-phase spectra, on the other hand, show a remarkable resemblance to those of Type Ib/c supernovae, without clear evidence for hydrogen. Near maximum brightness SN 2003bg displayed a bolometric luminosity comparable to that of other Type I hypernovae unrelated to gamma-ray bursts, implying a rather normal amount of 56Ni production (0.1-0.2 M ☉) compared with other such objects. The bolometric light curve of SN 2003bg, on the other hand, is remarkably broad, thus suggesting a relatively large progenitor mass at the moment of explosion. These observations, together with the large value of the kinetic energy of expansion established in the accompanying paper, suggest that SN 2003bg can be regarded as a Type IIb hypernova.
    The Astrophysical Journal 09/2009; 703(2):1612. · 6.73 Impact Factor
  • Joanna E. Thomas-Osip, Gabriel E. Prieto
    [Show abstract] [Hide abstract]
    ABSTRACT: Las Campanas Observatory has been designated as the location for the Giant Magellan Telescope (GMT). We report results obtained since the commencement, in 2005, of a systematic site testing campaign at LCO. Measurements of the turbulence profile of the free-atmosphere above LCO have been collected with a MASS/DIMM. We examine the contribution to the seeing arising from turbulence in the ground layer (defined here as below an altitude of 500 m) through the difference between the turbulence integrals in the full atmosphere (as measured by DIMM) and in the free atmosphere (as measured by MASS). In preparation to characterize the Giant Magellan Telescope site and guide the development of its adaptive optics system, two campaigns to systematically compare the turbulence profiles obtained independently with three different instruments were conducted at Las Campanas Observatory in September, 2007 and January 2008. Slope detection and ranging (SLODAR) was used on the 2.5-m duPont telescope. SLODAR measures the Cn2 profile as a function of altitude through observations of double stars. The separation of the observed double star sets the maximum altitude and height resolution. Ground layer (altitudes < 1 km) and free atmosphere turbulence profiles are compared with those obtained with a lunar scintillometer (LuSci) and a multi-aperture scintillation sensor (MASS), respectively. In addition, the total atmospheric seeing was measured by both SLODAR and a differential image motion monitor (DIMM).
    09/2009;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Optical and near-infrared photometry and optical spectroscopy are reported for SN 2003bg, starting a few days after explosion and extending for a period of more than 300 days. Our early-time spectra reveal the presence of broad, high-velocity Balmer lines. The nebular-phase spectra, on the other hand, show a remarkable resemblance to those of Type Ib/c supernovae, without clear evidence for hydrogen. Near maximum brightness SN 2003bg displayed a bolometric luminosity comparable to that of other Type I hypernovae unrelated to gamma-ray bursts, implying a rather normal amount of 56Ni production (0.1-0.2 Msun) compared with other such objects. The bolometric light curve of SN 2003bg, on the other hand, is remarkably broad, thus suggesting a relatively large progenitor mass at the moment of explosion. These observations, together with the large value of the kinetic energy of expansion established in the accompanying paper (Mazzali et al. 2009), suggest that SN 2003bg can be regarded as a Type IIb hypernova. Comment: 41 pages, 12 figures, accepted by The Astrophysical Journal
    08/2009;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An extensive dataset for SN 2003hv that covers the flux evolution from maximum light to day +786 is presented. The data are combined with published nebular-phase infrared spectra, and the observations are compared to model light curves and synthetic nebular spectra. SN 2003hv is a normal Type Ia supernova (SN Ia) with photometric and spectroscopic properties consistent with its rarely observed B-band decline-rate parameter, Delta m_15 = 1.61 +- 0.02. The blueshift of the most isolated [Fe II] lines in the nebular-phase optical spectrum appears consistent with those observed in the infrared at similar epochs. At late times there is a prevalent color evolution from the optical toward the near-infrared bands. We present the latest-ever detection of a SN Ia in the near-infrared in Hubble Space Telescope images. The study of the ultraviolet/optical/infrared (UVOIR) light curve reveals that a substantial fraction of the flux is "missing" at late times. Between 300-700 days past maximum brightness, the UVOIR light curve declines linearly following the decay of radioactive Co56, assuming full and instantaneous positron trapping. At 700 days we detect a possible slowdown of the decline in optical bands, mainly in the V band. The data are incompatible with a dramatic infrared catastrophe. However, the idea that an infrared catastrophe occurred in the densest regions before 350 days can explain the missing flux from the UVOIR wavelengths and the flat-topped profiles in the near-infrared. We argue that such a scenario is possible if the ejecta are clumpy. The observations suggest that positrons are most likely trapped in the ejecta. Comment: 20 pages, 9 figures. Fixed typos found during proofs to match published version
    Astronomy and Astrophysics 08/2009; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present extensive optical and infrared photometry of the afterglow of gamma-ray burst (GRB) 030329 and its associated supernova (SN) 2003dh over the first two months after detection (2003 March 30-May 29 UT). Optical spectroscopy from a variety of telescopes is shown and, when combined with the photometry, allows an unambiguous separation between the afterglow and SN contributions. The optical afterglow of the GRB is initially a power-law continuum but shows significant color variations during the first week that are unrelated to the presence of an SN. The early afterglow light curve also shows deviations from the typical power-law decay. An SN spectrum is first detectable ~7 days after the burst and dominates the light after ~11 days. The spectral evolution and the light curve are shown to closely resemble those of SN 1998bw, a peculiar Type Ic SN associated with GRB 980425, and the time of the SN explosion is close to the observed time of the GRB. It is now clear that at least some GRBs arise from core-collapse SNe.
    The Astrophysical Journal 12/2008; 599(1):394. · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present simultaneous precipitable water vapour (PWV) measurements made at the Las Campanas Observatory in late 2007 using an Infrared Radiometer for Millimetre Astronomy (IRMA) and the Magellan Inamori Kyocera Echelle (MIKE) optical spectrograph. Opacity due to water vapour is the primary concern for ground based infrared astronomy. IRMA has been developed to measure the emission of rotational transitions of water vapour across a narrow spectral region centred around 20 mum, using a 0.1 m off-axis parabolic mirror and a sophisticated atmospheric model to retrieve PWV. In contrast, the MIKE instrument is used in conjunction with the 6.5 m Magellan Clay telescope, and determines the PWV through absorption measurements of water vapour lines in the spectra of telluric standard stars. With its high spectral resolution, MIKE is able to measure absorption from optically thin water vapour lines and can derive PWV values using a simple, single layer atmospheric model. In an attempt to improve the MIKE derived PWV measurements, we explore the potential of fitting a series of MIKE water vapour line measurements, having different opacities.
    Proc SPIE 08/2008;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In preparation to characterize the Giant Magellan Telescope site and guide the development of its adaptive optics system, two campaigns to systematically compare the turbulence profiles obtained independently with three different instruments were conducted at Las Campanas Observatory in September, 2007 and January 2008. Slope detection and ranging (SLODAR) was used on the 2.5-m duPont telescope. SLODAR measures the C2n profile as a function of altitude through observations of double stars. The separation of the observed double star sets the maximum altitude and height resolution. Ground layer (altitudes < 1 km) and free atmosphere turbulence profiles are compared with those obtained with a lunar scintillometer (LuSci) and a multi-aperture scintillation sensor (MASS), respectively. In addition, the total atmospheric seeing was measured by both SLODAR and a differential image motion monitor (DIMM).
    Proc SPIE 08/2008;

Publication Stats

312 Citations
132.81 Total Impact Points

Institutions

  • 2014
    • Aarhus University
      • Department of Physics and Astronomy
      Aarhus, Central Jutland, Denmark
  • 2008–2014
    • Carnegie Institution for Science
      • Department of Terrestrial Magnetism
      Washington, West Virginia, United States
  • 2007–2008
    • Carnegie Institute
      Washington, Washington, D.C., United States
  • 2005
    • University of Hawaiʻi at Mānoa
      • Institute of Astronomy
      Honolulu, HI, United States
  • 2001
    • Massachusetts Institute of Technology
      • Department of Earth Atmospheric and Planetary Sciences
      Cambridge, MA, United States