Are you D. Ai?

Claim your profile

Publications (4)38.97 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The energy gap for electronic excitations is one of the most important characteristics of the superconducting state, as it directly reflects the pairing of electrons. In the copper-oxide high-temperature superconductors (HTSCs), a strongly anisotropic energy gap, which vanishes along high-symmetry directions, is a clear manifestation of the d-wave symmetry of the pairing. There is, however, a dramatic change in the form of the gap anisotropy with reduced carrier concentration (underdoping). Although the vanishing of the gap along the diagonal to the square Cu-O bond directions is robust, the doping dependence of the large gap along the Cu-O directions suggests that its origin might be different from pairing. It is thus tempting to associate the large gap with a second-order parameter distinct from superconductivity. We use angle-resolved photoemission spectroscopy to show that the two-gap behavior and the destruction of well-defined electronic excitations are not universal features of HTSCs, and depend sensitively on how the underdoped materials are prepared. Depending on cation substitution, underdoped samples either show two-gap behavior or not. In contrast, many other characteristics of HTSCs, such as the dome-like dependence of Tc on doping, long-lived excitations along the diagonals to the Cu-O bonds, and an energy gap at the Brillouin zone boundary that decreases monotonically with doping while persisting above Tc (the pseudogap), are present in all samples, irrespective of whether they exhibit two-gap behavior or not. Our results imply that universal aspects of high-Tc superconductivity are relatively insensitive to differences in the electronic states along the Cu-O bond directions.
    Proceedings of the National Academy of Sciences 10/2013; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to understand the origin of high-temperature superconductivity in copper oxides, we must understand the normal state from which it emerges. Here, we examine the evolution of the normal state electronic excitations with temperature and carrier concentration in Bi2Sr2CaCu2O8 using angle-resolved photoemission. In contrast to conventional superconductors, where there is a single temperature scale Tc separating the normal from the superconducting state, the high- temperature superconductors exhibit two additional temperature scales. One is the pseudogap scale T*, below which electronic excitations exhibit an energy gap. The second is the coherence scale Tcoh, below which sharp spectral features appear due to increased lifetime of the excitations. We find that T* and Tcoh are strongly doping dependent and cross each other near optimal doping. Thus the highest superconducting Tc emerges from an unusual normal state that is characterized by coherent excitations with an energy gap.
    Proceedings of the National Academy of Sciences 02/2013; 108(23). · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A key question in condensed-matter physics is to understand how high-temperature superconductivity emerges on adding mobile charged carriers to an antiferromagnetic Mott insulator. We address this question using angle-resolved photoemission spectroscopy to probe the electronic excitations of the non-superconducting state that exists between the Mott insulator and the d-wave superconductor in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}. Despite a temperature-dependent resistivity characteristic of an insulator, the excitations in this intermediate state have a highly anisotropic energy gap that vanishes at four points in momentum space. This nodal-liquid state has the same gap structure as that of the d-wave superconductor but no sharp quasiparticle peaks. We observe a smooth evolution of the excitation spectrum, along with the appearance of coherent quasiparticles, as one goes through the insulator-to-superconductor transition as a function of doping. Our results suggest that high-temperature superconductivity emerges when quantum phase coherence is established in a non-superconducting nodal liquid.
    Nature Physics 02/2010; 6(2). · 19.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use angle resolved photoemission spectroscopy to probe the electronic excitations of the non-superconducting state that exists between the antiferromagnetic Mott insulator at zero doping and the superconducting state at larger dopings in Bi_2Sr_2CaCu_2O_{8+\delta}. We find that this state is a nodal liquid whose excitation gap becomes zero only at points in momentum space. Despite exhibiting a resistivity characteristic of an insulator and the absence of coherent quasiparticle peaks, this material has the same gap structure as the d-wave superconductor. We observe a smooth evolution of the spectrum across the insulator-to-superconductor transition, which suggests that high temperature superconductivity emerges when quantum phase coherence is established in a non-superconducting nodal liquid.
    10/2009;