C. M. Casey

Cornell University, Ithaca, New York, United States

Are you C. M. Casey?

Claim your profile

Publications (53)272.36 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present stringent constraints on the average mid-, far-infrared and radio emissions of $\sim$14200 quiescent galaxies (QGs), identified out to $z=3$ in the COSMOS field via their rest-frame NUV$-$r and r$-$J colors, and with stellar masses $M_{\star}=10^{9.8-12.2} \,M_{\odot} $. Stacking in deep Spitzer (MIPS $24\,\mu$m), Herschel (PACS and SPIRE), and VLA (1.4 GHz) maps reveals extremely low dust-obscured star formation rates for QGs (SFR $<0.1-3\,M_{\odot}$yr$^{-1}$ at $z \leqslant 2$ and $<6-18\,M_{\odot}$yr$^{-1}$ at $z > 2$), consistent with the low unobscured SFRs ($<0.01-1.2\,M_{\odot}$yr$^{-1}$) inferred from modeling their ultraviolet-to-near-infrared photometry. The average SFRs of QGs are $>10\times$ below those of star-forming galaxies (SFGs) within the $M_{\star}$- and $z$-ranges considered. The stacked 1.4 GHz signals (S/N $> 5$) are, if attributed solely to star formation, in excess of the total (obscured plus unobscured) SFR limits, suggestive of a widespread presence of low-luminosity active galactic nuclei (AGN) among QGs. Our results reaffirm the existence of a significant population QGs out to $z = 3$, thus corroborating the need for powerful quenching mechanism(s) to terminate star formation in galaxies at earlier epochs.
    11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Galaxies' rest-frame ultraviolet (UV) properties are often used to directly infer the degree to which dust obscuration affects the measurement of star formation rates. While much recent work has focused on calibrating dust attenuation in galaxies selected at rest-frame ultraviolet wavelengths, locally and at high-$z$, here we investigate attenuation in dusty, star-forming galaxies (DSFGs) selected at far-infrared wavelengths. By combining multiwavelength coverage across 0.15--500\,$\mu$m in the COSMOS field, in particular making use of {\it Herschel} imaging, and a rich dataset on local galaxies, we find a empirical variation in the relationship between rest-frame UV slope ($\beta$) and ratio of infrared-to-ultraviolet emission ($L_{\rm IR}/L_{\rm UV}\equiv\,IRX$) as a function of infrared luminosity, or total star formation rate, SFR. Both locally and at high-$z$, galaxies above SFR$\gt$50\,M$_\odot$\,yr$^{-1}$ deviate from the nominal $IRX-\beta$ relation towards bluer colors by a factor proportional to their increasing IR luminosity. We also estimate contamination rates of DSFGs on high-$z$ dropout searches of $\ll1$\%\ at $z\lt4-10$, providing independent verification that contamination from very dusty foreground galaxies is low in LBG searches. Overall, our results are consistent with the physical interpretation that DSFGs, e.g. galaxies with $>50$\,M$_\odot$\,yr$^{-1}$, are dominated at all epochs by short-lived, extreme burst events, producing many young O and B stars that are primarily, yet not entirely, enshrouded in thick dust cocoons. The blue rest-frame UV slopes of DSFGs are inconsistent with the suggestion that most DSFGs at $z\sim2$ exhibit steady-state star formation in secular disks.
    10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ultraluminous and luminous infrared galaxies (ULIRGs and LIRGs) are the most extreme star-forming galaxies in the universe, and dominate the total star formation rate density at z>1. In the local universe (z<0.3), the majority of ULIRGs and a significant portion of LIRGs are triggered by interactions between gas-rich spiral galaxies, yet it is unclear if this is still the case at high-z. To investigate the relative importance of galaxy interactions in infrared luminous galaxies, we carry out a comparison of optical morphological properties between local (U)LIRGs and (U)LIRGs at z=0.5-1.5 based on the same sample selection, morphology classification scheme, and optical morphology at similar rest-frame wavelengths. In addition, we quantify the systematics in comparing local and high-z datasets by constructing a redshifted dataset from local (U)LIRGs, in which its data quality mimics the high-z dataset. Based on the Gini-M20 classification scheme, we find that the fraction of interacting systems decreases by ~8% from local to z<~1, and it is consistent with the reduction between local and redshifted datasets (6(+14-6)%). Based on visual classifications, the merger fraction of local ULIRGs is found to be ~20% lower compared to published results, and the reduction due to redshifiting is 15(+10-8)%. Consequently, the differences of merger fractions between local and z<~1 (U)LIRGs is only ~17%. These results demonstrate that there is no strong evolution in the fraction of (U)LIRGs classified as mergers at least out to z~1. At z>1, the morphology types of ~30% of (U)LIRGs can not be determined due to their faintness in the F814W-band, and thus the merger fraction measured at z>1 suffers from large uncertainties.
    The Astrophysical Journal 06/2014; 791(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Keck-Adaptive Optics and Hubble Space Telescope high resolution near-infrared (IR) imaging for 500 um-bright candidate lensing systems identified by the Herschel Multi-tiered Extra-galactic Survey (HerMES) and Herschel Astrophysical Terahertz Survey (H-ATLAS). Out of 87 candidates with near-IR imaging, 15 (~17%) display clear near-IR lensing morphologies. We present near-IR lens models to reconstruct and recover basic rest-frame optical morphological properties of the background galaxies from 12 new systems. Sources with the largest near-IR magnification factors also tend to be the most compact, consistent with the size bias predicted from simulations and pre- vious lensing models for sub-millimeter galaxies. For four new sources that also have high-resolution sub-mm maps, we test for differential lensing between the stellar and dust components and find that the 880 um magnification factor (u_880) is ~1.5 times higher than the near-IR magnification factor (u_NIR), on average. We also find that the stellar emission is ~2 times more extended in size than dust. The rest-frame optical properties of our sample of Herschel-selected lensed SMGs are consistent with those of unlensed SMGs, which suggests that the two populations are similar.
    06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We discuss the restframe UV emission from the starbursting galaxy HFLS3 at z=6.34, discovered in Herschel/SPIRE data due to its red color in the submm wavelengths from 250-500 um. The apparent inst. SFR of HFLS3 inferred from the total FIR luminosity measured with over 15 photometric data points between 100 to 1000 um is 2900 Msun/yr. Keck/NIRC2 Ks band adaptive optics imaging data showed two potential NIR counterparts near HFLS3. Previously, the northern galaxy was taken to be in the foreground at z=2.1 while the southern galaxy was assumed to HFLS3's NIR counterpart. New HST/WFC3 and ACS imaging data show both optically bright galaxies are in the foreground at z<6. A new lensing model based on HST data and mm-wave continuum emission yields a magnification of 2.2+/-0.3. The lack of multiple imaging constrains the lensing magnification to be lower than either 2.7 or 3.5 at the 95% confidence level for the two scenarios, which attribute one or two components to HFLS3 in the source plane. Correcting for gravitational lensing, the inst. SFR is 1320 Msun/yr with the 95% confidence lower limit around 830 Msun/yr. Using models for the restframe UV to FIR SED, the ave. SFR over the last 100 Myr is around 660 Msun/yr. The dust and stellar masses of HFLS3 from the same SED models are 3x10^8 Msun and ~5x10^10 Msun, respectively, with large systematic uncertainties on assumptions related to the SED model. With HST/WFC3 images we also find diffuse NIR emission about 0.5" (~3 kpc) SW of HFLS3 that remains undetected in the ACS data. The emission has a photometric redshift consistent with either z~6 or a dusty galaxy template at z~2. If at the same redshift as HFLS3 the detected diffuse emission could be part of the complex merger system that could be triggering the starburst. Alternatively, it could be part of the foreground structure at z~2.1 that is responsible for lensing of HFLS3.
    The Astrophysical Journal 04/2014; 790(1). · 6.73 Impact Factor
  • Source
    Caitlin M. Casey, Desika Narayanan, Asantha Cooray
    [Show abstract] [Hide abstract]
    ABSTRACT: Far-infrared and submillimeter wavelength surveys have now established the important role of dusty, star-forming galaxies (DSFGs) in the assembly of stellar mass and the evolution of massive galaxies in the Universe. The brightest of these galaxies have infrared luminosities in excess of 10$^{13}$ L$_{\odot}$ with implied star-formation rates of thousands of solar masses per year. They represent the most intense starbursts in the Universe, yet many are completely optically obscured. Their easy detection at submm wavelengths is due to dust heated by ultraviolet radiation of newly forming stars. When summed up, all of the dusty, star-forming galaxies in the Universe produce an infrared radiation field that has an equal energy density as the direct starlight emission from all galaxies visible at ultraviolet and optical wavelengths. The bulk of this infrared extragalactic background light emanates from galaxies as diverse as gas-rich disks to mergers of intense starbursting galaxies. Major advances in far-infrared instrumentation in recent years, both space-based and ground-based, has led to the detection of nearly a million DSFGs, yet our understanding of the underlying astrophysics that govern the start and end of the dusty starburst phase is still in nascent stage. This review is aimed at summarizing the current status of DSFG studies, focusing especially on the detailed characterization of the best-understood subset (submillimeter galaxies, who were summarized in the last review of this field over a decade ago, Blain et al., 2002), but also the selection and characterization of more recently discovered DSFG populations. We review DSFG population statistics, their physical properties including dust, gas and stellar contents, their environments, and current theoretical models related to the formation and evolution of these galaxies.
    Physics Reports 02/2014; · 22.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use the James Clerk Maxwell Telescope's SCUBA-2 camera to image a 400 arcmin^2 area surrounding the GOODS-N field. The 850 micron rms noise ranges from a value of 0.49 mJy in the central region to 3.5 mJy at the outside edge. From these data, we construct an 850 micron source catalog to 2 mJy containing 49 sources detected above the 4-sigma level. We use an ultradeep (11.5 uJy at 5-sigma) 1.4 GHz image obtained with the Karl G. Jansky Very Large Array together with observations made with the Submillimeter Array to identify counterparts to the submillimeter galaxies. For most cases of multiple radio counterparts, we can identify the correct counterpart from new and existing Submillimeter Array data. We have spectroscopic redshifts for 62% of the radio sources in the 9 arcmin radius highest sensitivity region (556/894) and 67% of the radio sources in the GOODS-N region (367/543). We supplement these with a modest number of additional photometric redshifts in the GOODS-N region (30). We measure millimetric redshifts from the radio to submillimeter flux ratios for the unidentified submillimeter sample, assuming an Arp 220 spectral energy distribution. We find a radio flux dependent K-z relation for the radio sources, which we use to estimate redshifts for the remaining radio sources. We determine the star formation rates (SFRs) of the submillimeter sources based on their radio powers and their submillimeter and find that they agree well. The radio data are deep enough to detect star-forming galaxies with SFRs >2000 solar masses per year to z~6. We find galaxies with SFRs up to ~6,000 solar masses per year over the redshift range z=1.5-6, but we see evidence for a turn-down in the SFR distribution function above 2000 solar masses per year.
    01/2014; 784(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We outline the prospects for performing pioneering radio weak gravitational lensing analyses using observations from a potential forthcoming JVLA Sky Survey program. A large-scale survey with the JVLA can offer interesting and unique opportunities for performing weak lensing studies in the radio band, a field which has until now been the preserve of optical telescopes. In particular, the JVLA has the capacity for large, deep radio surveys with relatively high angular resolution, which are the key characteristics required for a successful weak lensing study. We highlight the potential advantages and unique aspects of performing weak lensing in the radio band. In particular, the inclusion of continuum polarisation information can greatly reduce noise in weak lensing reconstructions and can also remove the effects of intrinsic galaxy alignments, the key astrophysical systematic effect that limits weak lensing at all wavelengths. We identify a VLASS "deep fields" program (total area ~10-20 square degs), to be conducted at L-band and with high-resolution (A-array configuration), as the optimal survey strategy from the point of view of weak lensing science. Such a survey will build on the unique strengths of the JVLA and will remain unsurpassed in terms of its combination of resolution and sensitivity until the advent of the Square Kilometre Array. We identify the best fields on the JVLA-accessible sky from the point of view of overlapping with existing deep optical and near infra-red data which will provide crucial redshift information and facilitate a host of additional compelling multi-wavelength science.
    12/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present deep 450 μm and 850 μm observations of a large, uniformly covered 394 arcmin2 area in the Cosmic Evolution Survey (COSMOS) field obtained with the SCUBA-2 instrument on the James Clerk Maxwell Telescope (JCMT). We achieve root-mean-square noise values of σ450 = 4.13 mJy and σ850 = 0.80 mJy. The differential and cumulative number counts are presented and compared to similar previous works. Individual point sources are identified at >3.6σ significance, a threshold corresponding to a 3-5 per cent sample contamination rate. We identify 78 sources at 450 μm and 99 at 850 μm, with flux densities S450 = 13-37 mJy and S850 = 2-16 mJy. Only 62-76 per cent of 450 μm sources are 850 μm detected and 61-81 per cent of 850 μm sources are 450 μm detected. The positional uncertainties at 450 μm are small (1-2.5 arcsec) and therefore allow a precise identification of multiwavelength counterparts without reliance on detection at 24 μm or radio wavelengths; we find that only 44 per cent of 450 μm sources and 60 per cent of 850 μm sources have 24 μm or radio counterparts. 450 μm selected galaxies peak at = 1.95 ± 0.19 and 850 μm selected galaxies peak at = 2.16 ± 0.11. The two samples occupy similar parameter space in redshift and luminosity, while their median SED peak wavelengths differ by ˜20-50 μm (translating to ΔTdust = 8-12 K, where 450 μm selected galaxies are warmer). The similarities of the 450 μm and 850 μm populations, yet lack of direct overlap between them, suggests that submillimetre surveys conducted at any single far-infrared wavelength will be significantly incomplete (≳30 per cent) at censusing infrared-luminous star formation at high z.
    Monthly Notices of the Royal Astronomical Society 12/2013; 436(3):1919-1954. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a method for selecting $z>4$ dusty, star forming galaxies (DSFGs) using Herschel/SPIRE 250/350/500 $\mu m$ flux densities to search for red sources. We apply this method to 21 deg$^2$ of data from the HerMES survey to produce a catalog of 38 high-$z$ candidates. Follow-up of the first 5 of these sources confirms that this method is efficient at selecting high-$z$ DSFGs, with 4/5 at $z=4.3$ to $6.3$ (and the remaining source at $z=3.4$), and that they are some of the most luminous dusty sources known. Comparison with previous DSFG samples, mostly selected at longer wavelengths (e.g., 850 $\mu m$) and in single-band surveys, shows that our method is much more efficient at selecting high-$z$ DSFGs, in the sense that a much larger fraction are at $z>3$. Correcting for the selection completeness and purity, we find that the number of bright ($S_{500\,\mu m} \ge 30$ mJy), red Herschel sources is $3.3 \pm 0.8$ deg$^{-2}$. This is much higher than the number predicted by current models, suggesting that the DSFG population extends to higher redshifts than previously believed. If the shape of the luminosity function for high-$z$ DSFGs is similar to that at $z\sim2$, rest-frame UV based studies may be missing a significant component of the star formation density at $z=4$ to $6$, even after correction for extinction.
    The Astrophysical Journal 10/2013; 780(1). · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the results from a large 850-μm survey of the σ Orionis cluster using the SCUBA-2 camera on the James Clerk Maxwell Telescope. The 0.5° diameter circular region we surveyed contains 297 young stellar objects with an age estimated at about 3 Myr. We detect nine of these objects, eight of which have infrared excesses from an inner disc. We also serendipitously detect three non-stellar sources at >5σ that are likely background submillimetre galaxies. The nine detected stars have inferred disc masses ranging from 5 to about 17 MJup, assuming similar dust properties as Taurus discs and an interstellar medium gas-to-dust ratio of 100. There is a net positive signal towards the positions of the individually undetected infrared excess sources indicating a mean disc mass of 0.5 MJup. Stacking the emission towards those stars without infrared excesses constrains their mean disc mass to less than 0.3 MJup, or an equivalent Earth mass in dust. The submillimetre luminosity distribution is significantly different from that in the younger Taurus region, indicating disc mass evolution as star-forming regions age and the infrared excess fraction decreases. Submillimetre Array observations reveal CO emission towards four sources demonstrating that some, but probably not much, molecular gas remains in these relatively evolved discs. These observations provide new constraints on the dust and gas mass of protoplanetary discs during the giant planet building phase and provide a reference level for future studies of disc evolution.
    Monthly Notices of the Royal Astronomical Society 10/2013; 435(2):1671-1679. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We combine Herschel PACS and SPIRE maps of the full 2 deg^2 COSMOS field with existing multi-wavelength data to obtain template and model-independent optical-to-far-infrared spectral energy distributions (SEDs) for 4,218 Herschel-selected sources with log(L_IR/L_sun) = 9.4-13.6 and z = 0.02-3.54. Median SEDs are created by binning the optical to far-infrared (FIR) bands available in COSMOS as a function of infrared luminosity. Herschel probes rest-frame wavelengths where the bulk of the infrared radiation is emitted, allowing us to more accurately determine fundamental dust properties of our sample of infrared luminous galaxies. We find that the SED peak wavelength (lambda_peak) decreases and the dust mass (M_dust) increases with increasing total infrared luminosity (L_IR). In the lowest infrared luminosity galaxies (log(L_IR/L_sun) = 10.0-11.5), we see evidence of Polycyclic Aromatic Hydrocarbons (PAH) features (lambda=7-9 um), while in the highest infrared luminosity galaxies (L_IR > 10^12 L_sun) we see an increasing contribution of hot dust and/or power-law emission, consistent with the presence of heating from an active galactic nucleus (AGN). We study the relationship between stellar mass and star formation rate of our sample of infrared luminous galaxies and find no evidence that Herschel-selected galaxies follow the SFR/M_* "main sequence" as previously determined from studies of optically selected, star-forming galaxies. Finally, we compare the mid-infrared (MIR) to FIR properties of our infrared luminous galaxies using the previously defined diagnostic, IR8 = L_IR / L_8, and find that galaxies with L_IR > 10^11.3 L_sun tend to systematically lie above (~3-5) the IR8 "infrared main sequence", suggesting either suppressed PAH emission or an increasing contribution from AGN heating.
    The Astrophysical Journal 10/2013; 778(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Galaxy interactions/mergers have been shown to dominate the population of IR luminous galaxies (log(LIR)>11.6Lsun) in the local Universe (z<0.25). Recent studies based on the relation between galaxies' star formation rates and stellar mass (the SFR-M relation or the galaxy main sequence (MS)) have suggested that galaxy interaction/mergers may only become significant when galaxies fall well above the galaxy MS. Since the typical SFR at given M increases with redshift, the existence of galaxy MS implies that massive, IR-luminous galaxies at high-z may not necessarily be driven by galaxy interactions. We examine the role of galaxy interactions in the SFR-M relation by carrying out a morphological analysis of 2084 Herschel-selected galaxies at 0.2 < z < 1.5 in the COSMOS field. Herschel-PACS and -SPIRE observations covering the full 2-deg^2 COSMOS field provide one of the largest far-IR selected samples of high-redshift galaxies with well-determined redshifts to date, with sufficient sensitivity at z ~ 1, to sample objects lying on and above the galaxy MS. Using a detailed visual classification scheme, we show that the fraction of "disk galaxies" decreases and the fraction of "irregular" galaxies increases systematically with increasing LIR out to z ~ 1.5 and z ~ 1.0, respectively. At log(LIR) > 11.5 Lsun, >50% of the objects show evident features of strongly interacting/merger systems, where this percentage is similar to the studies of local IR-luminous galaxies. The fraction of interacting/merger systems also systematically increases with the deviation from the SFR-M relation, supporting the view that galaxies fall above the MS are more dominated by mergers than the MS galaxies. Meanwhile, we find that ~18% of massive IR-luminous MS galaxies are classified as interacting systems, where this population may not evolve through the evolutionary track predicted by a simple gas exhaustion model.
    The Astrophysical Journal 09/2013; 778(2). · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dust-obscured galaxies (DOGs) are an ultraviolet-faint, infrared-bright galaxy population that reside at z ~ 2 and are believed to be in a phase of dusty star-forming and active galactic nucleus (AGN) activity. We present far-infrared (far-IR) observations of a complete sample of DOGs in the 2 deg2 of the Cosmic Evolution Survey. The 3077 DOGs have z = 1.9 ± 0.3 and are selected from 24 μm and r + observations using a color cut of r + – [24] ≥ 7.5 (AB mag) and S 24 ≥ 100 μJy. Based on the near-IR spectral energy distributions, 47% are bump DOGs (star formation dominated) and 10% are power-law DOGs (AGN-dominated). We use SPIRE far-IR photometry from the Herschel Multi-tiered Extragalactic Survey to calculate the IR luminosity and characteristic dust temperature for the 1572 (51%) DOGs that are detected at 250 μm (≥3σ). For the remaining 1505 (49%) that are undetected, we perform a median stacking analysis to probe fainter luminosities. Herschel-detected and undetected DOGs have average luminosities of (2.8 ± 0.4) × 1012L ☉ and (0.77 ± 0.08) × 1012L ☉, and dust temperatures of (33 ± 7) K and (37 ± 5) K, respectively. The IR luminosity function for DOGs with S 24 ≥ 100 μJy is calculated, using far-IR observations and stacking. DOGs contribute 10%-30% to the total star formation rate (SFR) density of the universe at z = 1.5-2.5, dominated by 250 μm detected and bump DOGs. For comparison, DOGs contribute 30% to the SFR density for all z = 1.5-2.5 galaxies with S 24 ≥ 100 μJy. DOGs have a large scatter about the star formation main sequence and their specific SFRs show that the observed phase of star formation could be responsible for their total observed stellar mass at z ~ 2.
    The Astrophysical Journal 09/2013; 775(1):61. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use the SCUBA-2 submillimeter camera mounted on the JCMT to obtain extremely deep number counts at 450 and 850um. We combine data on two cluster lensing fields, A1689 and A370, and three blank fields, CDF-N, CDF-S, and COSMOS, to measure the counts over a wide flux range at each wavelength. We use statistical fits to broken power law representations to determine the number counts. This allows us to probe to the deepest possible level in the data. At both wavelengths our results agree well with the literature in the flux range over which they have been measured, with the exception of the 850um counts in CDF-S, where we do not observe the counts deficit found by previous single-dish observations. At 450um, we detect significant counts down to ~1mJy, an unprecedented depth at this wavelength. By integrating the number counts above this flux limit, we measure 113.9^{+49.7}_{-28.4} Jydeg^{-2} of the 450um extragalactic background light (EBL). The majority of this contribution is from sources with S_450um between 1-10mJy, and these sources are likely to be the ones that are analogous to the local luminous infrared galaxies (LIRGs). At 850um, we measure 37.3^{+21.1}_{-12.9} Jydeg^{-2} of the EBL. Because of the large systematic uncertainties on the COBE measurements, the percentage of the EBL we resolve could range from 48%-153% (44%-178%) at 450 (850)um. Based on high-resolution SMA observations of around half of the 4sigma 850um sample in CDF-N, we find that 12.5^{+12.1}_{-6.8}% of the sources are blends of multiple fainter sources. This is a low multiple fraction, and we find no significant difference between our original SCUBA-2 850um counts and the multiplicity corrected counts.
    The Astrophysical Journal 08/2013; 776(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the results from a large 850 micron survey of the sigma Orionis cluster using the SCUBA-2 camera on the James Clerk Maxwell Telescope. The 0.5-degree diameter circular region we surveyed contains 297 young stellar objects with an age estimated at about 3Myr. We detect 9 of these objects, 8 of which have infrared excesses from an inner disc. We also serendipitously detect 3 non-stellar sources at > 5sigma that are likely background submillimetre galaxies. The 9 detected stars have inferred disc masses ranging from 5 to about 17MJup, assuming similar dust properties as Taurus discs and an ISM gas-to-dust ratio of 100. There is a net positive signal toward the positions of the individually undetected infrared excess sources indicating a mean disc mass of 0.5 MJup . Stacking the emission toward those stars without infrared excesses constrains their mean disc mass to less than 0.3MJup, or an equivalent Earth mass in dust. The submillimetre luminosity distribution is significantly different from that in the younger Taurus region, indicating disc mass evolution as star forming regions age and the infrared excess fraction decreases. Submillimeter Array observations reveal CO emission toward 4 sources demonstrating that some, but probably not much, molecular gas remains in these relatively evolved discs. These observations provide new constraints on the dust and gas mass of protoplanetary discs during the giant planet building phase and provide a reference level for future studies of disc evolution.
    07/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stellar archaeology shows that massive elliptical galaxies formed rapidly about ten billion years ago with star-formation rates of above several hundred solar masses per year. Their progenitors are probably the submillimetre bright galaxies at redshifts z greater than 2. Although the mean molecular gas mass (5 × 10(10) solar masses) of the submillimetre bright galaxies can explain the formation of typical elliptical galaxies, it is inadequate to form elliptical galaxies that already have stellar masses above 2 × 10(11) solar masses at z ≈ 2. Here we report multi-wavelength high-resolution observations of a rare merger of two massive submillimetre bright galaxies at z = 2.3. The system is seen to be forming stars at a rate of 2,000 solar masses per year. The star-formation efficiency is an order of magnitude greater than that of normal galaxies, so the gas reservoir will be exhausted and star formation will be quenched in only around 200 million years. At a projected separation of 19 kiloparsecs, the two massive starbursts are about to merge and form a passive elliptical galaxy with a stellar mass of about 4 × 10(11) solar masses. We conclude that gas-rich major galaxy mergers with intense star formation can form the most massive elliptical galaxies by z ≈ 1.5.
    Nature 05/2013; · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dust-obscured galaxies (DOGs) are a UV-faint, IR-bright galaxy population that reside at z~2 and are believed to be in a phase of dusty star-forming and AGN activity. We present far-IR observations of a complete sample of DOGs in the 2 deg2 of COSMOS. The 3077 DOGs have =1.9+/-0.3 and are selected from 24um and r+ observations using a color cut of r+ - [24]>=7.5 (AB mag) and S24>=100uJy. Based on the near-IR SEDs, 47% are star-formation dominated and 10% are AGN-dominated. We use SPIRE far-IR photometry from HerMES to calculate the IR luminosity and characteristic dust temperature for the 1572 (51%) DOGs that are detected at 250um (>=3{\sigma}). For the remaining 1505 (49%) that are undetected, we perform a median stacking analysis to probe fainter luminosities. Detected and undetected DOGs have average IR luminosities of (2.8+/-0.4) x 1012 LSun and (0.77+-0.08)x10^12LSun, and dust temperatures of 34+/-7 K and 37+/-3 K, respectively. The IR luminosity function of DOGs with S24>=100uJy is calculated, using far-IR observations and stacking. DOGs contribute 10-30% to the total star formation rate density of the Universe at z=1.5-2.5, dominated by 250um detected and bump DOGs. For comparison, DOGs contribute 30% to the star-formation rate density of the Universe for all galaxies at z=1.5-2.5 with S24>=100uJy. DOGs have a large scatter about the star-formation main sequence and their specific star-formation rates show that the observed phase of star-formation could be responsible for their observed stellar mass at z~2.
    04/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present deep 450um and 850um observations of a large, uniformly covered 394arcmin^2 area in the COSMOS field obtained with the SCUBA-2 instrument on the James Clerk Maxwell Telescope (JCMT). We achieve root-mean-square noise values of 4.13mJy at 450um and 0.80mJy at 850um. The differential and cumulative number counts are presented and compared to similar previous works. Individual point sources are identified at >3.6sigma significance, a threshold corresponding to a 3-5% sample contamination rate. We identify 78 sources at 450um and 99 at 850um, with flux densities S450=13-37mJy and S850=2-16mJy. Only 62-76% of 450um sources are 850um detected and 61-81% of 850um sources are 450um detected. The positional uncertainties at 450um are small (1-2.5") and therefore allow a precise identification of multiwavelength counterparts without reliance on detection at 24um or radio wavelengths; we find that only 44% of 450um-selected galaxies and 60% of 850um-sources have 24um or radio counterparts. 450um-selected galaxies peak at =1.95+-0.19 and 850um=selected galaxies peak at =2.16+-0.11. The two samples occupy similar parameter space in redshift and luminosity, while their median SED peak wavelengths differ by ~10-50um (translating to deltaTdust =8-12K, where 450um-selected galaxies are warmer). The similarities of the 450um and 850um populations, yet lack of direct overlap between them, suggests that submillimeter surveys conducted at any single far-infrared wavelength will be significantly incomplete (~>30%) at censusing infrared-luminous star formation at high-z.
    02/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first analysis of the all-sky Swift BAT ultra hard X-ray (14-195 keV) data for a targeted list of objects. We find the BAT data can be studied at 3x fainter limits than in previous blind detection catalogs based on prior knowledge of source positions and using smaller energy ranges for source detection. We determine the AGN fraction in 134 nearby (z<0.05) luminous infrared galaxies (LIRGS) from the GOALS sample. We find that LIRGs have a higher detection frequency than galaxies matched in stellar mass and redshift at 14-195 keV and 24-35 keV. In agreement with work at other wavelengths, the AGN detection fraction increases strongly at high IR luminosity with half of high luminosity LIRGs (50%, 6/12, log L_IR/L_sun>11.8) detected. The BAT AGN classification shows 97% (37/38) agreement with Chandra and XMM AGN classification using hardness ratios or detection of a iron K-alpha line. This confirms our statistical analysis and supports the use of the Swift BAT all-sky survey to study fainter populations of any category of sources in the ultra hard X-ray band. BAT AGN in LIRGs tend to show higher column densities with 40\pm9% showing 14-195 keV/2-10 keV hardness flux ratios suggestive of high or Compton-thick column densities (log N_H>24 cm^-2), compared to only 12\pm5% of non-LIRG BAT AGN. We also find that using specific energy ranges of the BAT detector can yield additional sources over total band detections with 24% (5/21) of detections in LIRGs at 24-35 keV not detected at 14-195 keV.
    The Astrophysical Journal Letters 02/2013; 765(2). · 6.35 Impact Factor

Publication Stats

205 Citations
272.36 Total Impact Points

Institutions

  • 2014
    • Cornell University
      • Department of Astronomy
      Ithaca, New York, United States
  • 2013–2014
    • University of California, Irvine
      • Department of Physics and Astronomy
      Irvine, California, United States
  • 2012
    • California Institute of Technology
      • Spitzer Science Center
      Pasadena, California, United States
    • Instituto de Astrofísica de Canarias
      San Cristóbal de La Laguna, Canary Islands, Spain
    • University of Wisconsin–Madison
      Madison, Wisconsin, United States
    • Honolulu University
      Honolulu, Hawaii, United States
  • 2010–2011
    • University of Hawai'i System
      Honolulu, Hawaii, United States
  • 2009–2010
    • University of Cambridge
      • Institute of Astronomy
      Cambridge, ENG, United Kingdom
    • The University of Edinburgh
      • Institute for Astronomy (IfA)
      Edinburgh, SCT, United Kingdom
  • 2008
    • The University of Arizona
      • Department of Astronomy
      Tucson, Arizona, United States