Ville Pulkkinen

University of Helsinki, Helsinki, Southern Finland Province, Finland

Are you Ville Pulkkinen?

Claim your profile

Publications (28)144.67 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Carbon nanotubes (CNT) represent a great promise for technological and industrial development but serious concerns on their health effects have also emerged. Rod-shaped CNT are, in fact, able to induce asbestos-like pathogenicity in mice including granuloma formation in abdominal cavity and sub-pleural fibrosis. Exposure to CNT, especially in the occupational context, happens mainly by inhalation. However, little is known about the possible effects of CNT on pulmonary allergic diseases, such as asthma.Methods We exposed mice by inhalation to two types of multi-walled CNT, rigid rod-like and flexible tangled CNT, for four hours a day once or on four consecutive days. Early events were monitored immediately and 24 hours after the single inhalation exposure and the four day exposure mimicked an occupational work week. Mast cell deficient mice were used to evaluate the role of mast cells in the occurring inflammation.ResultsHere we show that even a short-term inhalation of the rod-like CNT induces novel innate immunity-mediated allergic-like airway inflammation in healthy mice. Marked eosinophilia was accompanied by mucus hypersecretion, AHR and the expression of Th2-type cytokines. Exploration of the early events by transcriptomics analysis reveals that a single 4-h exposure to rod-shaped CNT, but not to tangled CNT, causes a radical up-regulation of genes involved in innate immunity and cytokine/chemokine pathways. Mast cells were found to partially regulate the inflammation caused by rod-like CNT, but also alveaolar macrophages play an important role in the early stages.Conclusions These observations emphasize the diverse abilities of CNT to impact the immune system, and they should be taken into account for hazard assessment.
    Particle and Fibre Toxicology 10/2014; 11(1):48. DOI:10.1186/s12989-014-0048-2 · 6.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroendocrine tumors (NETs) arise from disseminated neuroendocrine cells and express general and specific neuroendocrine markers. Neuropeptide S receptor 1 (NPSR1) is expressed in neuroendocrine cells and its ligand neuropeptide S (NPS) affects cell proliferation. Our aim was to study whether NPS/NPSR1 could be used as a biomarker for neuroendocrine neoplasms and to identify the gene pathways affected by NPS/NPSR1. We collected a cohort of NETs comprised of 91 samples from endocrine glands, digestive tract, skin, and lung. Tumor type was validated by immunostaining of chromogranin-A and synaptophysin expression and tumor grade was analyzed by Ki-67 proliferation index. NPS and NPSR1 expression was quantified by immunohistochemistry using polyclonal antibodies against NPS and monoclonal antibodies against the amino-terminus and carboxy-terminus of NPSR1 isoform A (NPSR1-A). The effects of NPS on downstream signaling were studied in a human SH-SY5Y neuroblastoma cell line which overexpresses NPSR1-A and is of neuroendocrine origin. NPSR1 and NPS were expressed in most NET tissues, with the exception of adrenal pheochromocytomas in which NPS/NPSR1 immunoreactivity was very low. Transcriptome analysis of NPSR1-A overexpressing cells revealed that mitogen-activated protein kinase (MAPK) pathways, circadian activity, focal adhesion, transforming growth factor beta, and cytokine-cytokine interactions were the most altered gene pathways after NPS stimulation. Our results show that NETs are a source of NPS and NPSR1, and that NPS affects cancer-related pathways.
    Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin 06/2014; 465(2). DOI:10.1007/s00428-014-1602-x · 2.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The receptor for advanced glycation end-products (RAGE) is highly expressed in the lung, where it is believed to have a homeostatic role. Reduced plasma levels of soluble RAGE (sRAGE) have been reported in patients with chronic obstructive pulmonary disease (COPD). The aim of the present study was to evaluate the association of plasma sRAGE levels with a longitudinal decline of lung function. We have also measured plasma levels of high mobility group box 1 (HMGB1), a RAGE ligand which has been associated with chronic inflammatory diseases including COPD. Baseline plasma concentrations of sRAGE and HMGB1 were measured in non-smokers (n = 32), smokers without COPD (n = 212), and smokers with COPD (n = 51), and the associations of the plasma sRAGE and HMGB1 levels with longitudinal declines of lung function during a 4-year follow-up period were analysed. The plasma levels of sRAGE were significantly lower in smokers without COPD and in smokers with COPD, as compared to those of non-smokers. Plasma sRAGE levels positively correlated with FVC and FEV1 and inversely correlated with BMI and pack-years. Lower sRAGE levels were associated with greater declines of FEV1/FVC over 4 years in all participants. Moreover, multivariate regression analysis indicated that the baseline plasma sRAGE concentration was an independent predictor of FEV1/FVC decline in all groups. A subgroup analysis showed that decreased sRAGE levels are significantly associated with a more rapid decline of FEV1/FVC in smokers with COPD. There was no significant correlation between plasma HMGB1 levels and longitudinal decline of lung function. Lower plasma concentrations of sRAGE were associated with greater progression of airflow limitations over time, especially in smokers with COPD, suggesting that RAGE might have a protective role in the lung.
    BMC Pulmonary Medicine 04/2014; 14(1):68. DOI:10.1186/1471-2466-14-68 · 2.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Both genetic and environmental factors are important for the development of allergic diseases. However, a detailed understanding of how such factors act together is lacking. To elucidate the interplay between genetic and environmental factors in allergic diseases, we used a novel bioinformatics approach that combines feature selection and machine learning. In two materials, PARSIFAL (a European cross-sectional study of 3113 children) and BAMSE (a Swedish birth-cohort including 2033 children), genetic variants as well as environmental and lifestyle factors were evaluated for their contribution to allergic phenotypes. Monte Carlo feature selection and rule based models were used to identify and rank rules describing how combinations of genetic and environmental factors affect the risk of allergic diseases. Novel interactions between genes were suggested and replicated, such as between ORMDL3 and RORA, where certain genotype combinations gave odds ratios for current asthma of 2.1 (95% CI 1.2-3.6) and 3.2 (95% CI 2.0-5.0) in the BAMSE and PARSIFAL children, respectively. Several combinations of environmental factors appeared to be important for the development of allergic disease in children. For example, use of baby formula and antibiotics early in life was associated with an odds ratio of 7.4 (95% CI 4.5-12.0) of developing asthma. Furthermore, genetic variants together with environmental factors seemed to play a role for allergic diseases, such as the use of antibiotics early in life and COL29A1 variants for asthma, and farm living and NPSR1 variants for allergic eczema. Overall, combinations of environmental and life style factors appeared more frequently in the models than combinations solely involving genes. In conclusion, a new bioinformatics approach is described for analyzing complex data, including extensive genetic and environmental information. Interactions identified with this approach could provide useful hints for further in-depth studies of etiological mechanisms and may also strengthen the basis for risk assessment and prevention.
    PLoS ONE 11/2013; 8(11):e80080. DOI:10.1371/journal.pone.0080080 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Eosinophils are inflammatory cells of particular relevance to asthma exacerbations. Neuropeptide S (NPS) receptor was identified in a search for asthma susceptibility genes, where the risk haplotypes of the NPS receptor gene associated with total serum IgE above 100IU/ml and asthma. The aim of the present study was to investigate and compare expression of NPS receptor in human peripheral blood eosinophils derived from subjects with total serum IgE above and below 100IU/ml and patients with different phenotypes of asthma. Additionally, we aimed to study the function of NPS receptor in human eosinophils. We found higher NPS receptor protein expression in eosinophils derived from subjects with high IgE when compared to those from subjects with low IgE and the level of NPS receptor positively correlated with serum IgE. NPS receptor expression was also higher in eosinophils from patients with severe asthma than in cells from mild asthmatics or healthy controls. The receptor agonist NPS was a chemotactic agent for eosinophils. NPS also increased N-formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated CD11b integrin levels in eosinophils from subjects with high IgE. Furthermore, eosinophils from those subjects exhibited Ca(2+) mobilization but not cAMP rise in response to NPS. Altogether, NPS receptor may have a pathological role in individuals with severe asthma and/or elevated serum IgE levels as eosinophils from these patients express higher levels of NPS receptor protein and respond to NPS by enhanced migration and adhesion molecule expression.
    Peptides 11/2013; DOI:10.1016/j.peptides.2013.10.030 · 2.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinoid acid receptor-related Orphan Receptor Alpha (RORA) was recently identified as a susceptibility gene for asthma in a genome-wide association study. To investigate the impact of RORA on asthma susceptibility, we performed a genetic association study between RORA single nucleotide polymorphisms (SNPs) in the vicinity of the asthma-associated SNP (rs11071559) and asthma-related traits. Because the regulatory region of a previously implicated asthma susceptibility gene, Neuropeptide S receptor 1 (NPSR1), has predicted elements for RORA binding, we hypothesized that RORA may interact biologically and genetically with NPSR1. 37 RORA SNPs and eight NPSR1 SNPs were genotyped in the Swedish birth cohort BAMSE (2033 children) and the European cross-sectional PARSIFAL study (1120 children). Seven RORA SNPs confined into a 49 kb region were significantly associated with physician-diagnosed childhood asthma. The most significant association with rs7164773 (T/C) was driven by the CC genotype in asthma cases (OR = 2.0, 95%CI 1.36-2.93, p = 0.0003 in BAMSE; and 1.61, 1.18-2.19, p = 0.002 in the combined BAMSE-PARSIFAL datasets, respectively), and strikingly, the risk effect was dependent on the Gln344Arg mutation in NPSR1. In cell models, stimulation of NPSR1 activated a pathway including RORA and other circadian clock genes. Over-expression of RORA decreased NPSR1 promoter activity further suggesting a regulatory loop between these genes. In addition, Rora mRNA expression was lower in the lung tissue of Npsr1 deficient mice compared to wildtype littermates during the early hours of the light period. We conclude that RORA SNPs are associated with childhood asthma and show epistasis with NPSR1, and the interaction between RORA and NPSR1 may be of biological relevance. Combinations of common susceptibility alleles and less common functional polymorphisms may modify the joint risk effects on asthma susceptibility.
    PLoS ONE 04/2013; 8(4):e60111. DOI:10.1371/journal.pone.0060111 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The causes of severe childhood asthma are poorly understood. Our aim was in this study to define global patterns of gene expression in children with severe therapy-resistant and controlled asthma.White blood cells were isolated and the global transcriptome profile was characterised using the Affymetrix Human Gene ST 1.0 chip in children with severe, therapy-resistant asthma (SA, n=20), controlled asthma (CA, n=20) and healthy controls (Ctrl, n=19). Receptor expression was studied in separated fractions of leukocytes in adults asthmatics (n=12).1378 genes were differentially expressed in one or several of the SA vs. Ctrl, SA vs. CA or CA vs. Ctrl contrasts. Three significantly enriched KEGG pathways were represented; natural killer cell mediated cytotoxicity (upregulated in CA), N-Glycan biosynthesis (downregulated in SA) and bitter taste transduction, TAS2Rs (upregulated mostly in SA). qPCR experiments confirmed upregulation of TAS2Rs in the SA group compared to the Ctrl group. Further analysis of sorted leukocyte fractions from adult asthmatics indicated that TAS2R expression was highest in blood lymphocytes. Significant correlations between expression of the TAS2Rs and clinical markers of asthma severity were found in both adults and children.In conclusion, specific gene expression patterns were observed in children with severe, therapy-resistant asthma. The increased expression of bronchodilatory bitter taste receptors suggests a new target for treatment of asthma.
    European Respiratory Journal 12/2012; 42(1). DOI:10.1183/09031936.00077712 · 7.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activation of taste receptors (TAS2Rs) by bitter taste agonists has been reported to cause bronchodilation. The aim of this study was to extend the information on the effects of bitter taste agonists on responses induced by different contractile mediators in a standard airway physiology preparation. Isometric responses were assessed in guinea-pig trachea (GPT). TAS2R agonists were administered either to segments pre-contracted with different agonists for contraction, or given before challenge with the different contractile stimuli, including antigen in tissues from ovalbumin-sensitized animals. TAS2R mRNA expression on GPT epithelium and smooth muscle was measured with real-time PCR. Denatonium, chloroquine, thiamine and noscapine induced concentration-dependent relaxations (R(max): 98.3±1.6, 100.0±0.0, 100.0±0.0 and 52.3±1.1 % of maximum, respectively, in the presence of indomethacin) in segments pre-contracted with carbachol. The receptors for denatonium (TAS2R4, TAS2R10) and chloroquine, (TAS2R3, TAS2R10) were expressed in GPT. Whereas denatonium selectively inhibited contractions induced by carbachol, chloroquine uniformly inhibited contractions evoked by prostaglandin E(2), the thromboxane receptor agonist U-46619, leukotriene D(4), histamine or antigen. The effects of denatonium, but not those of chloroquine were partly inhibited by blockers of the large Ca(2+) activated K(+) channels and decreased by an increase of the level of pre-contraction. In conclusion, TAS2R agonists mediated strong relaxations and substantial inhibition of contractions in guinea-pig trachea. Chloroquine and denatonium had distinct patterns of activity indicating different signalling mechanisms. The findings reinforce the hypothesis that TAS2Rs are potential targets for the development of a new class of more efficacious agonists for bronchodilation.
    AJP Lung Cellular and Molecular Physiology 09/2012; 303(11). DOI:10.1152/ajplung.00205.2012 · 4.04 Impact Factor
  • American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California; 05/2012
  • American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California; 05/2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuropeptide S Receptor 1 (NPSR1, GPRA, GPR154) was first identified as an asthma candidate gene through positional cloning and has since been replicated as an asthma and allergy susceptibility gene in several independent association studies. In humans, NPSR1 encodes two G protein-coupled receptor variants, NPSR1-A and NPSR1-B, with unique intracellular C-termini. Both isoforms show distinct expression pattern in asthmatic airways. Although NPSR1-A has been extensively studied, functional differences and properties of NPSR1-B have not yet been clearly examined. Our objective was to investigate downstream signalling properties of NPSR1-B and functional differences between NPSR1-A and NPSR1-B. HEK-293 cells transiently overexpressing NPSR1-A or NPSR1-B were stimulated with the ligand neuropeptide S (NPS) and downstream signalling effects were monitored by genome-scale affymetrix expression-arrays. The results were verified by NPS concentration-response and time series analysis using qRT-PCR, cAMP and Ca²⁺ assays, and cAMP/PKA, MAPK/JNK and MAPK/ERK pathway specific reporter assays. NPSR1-B signalled through the same pathways and regulated the same genes as NPSR1-A, but NPSR1-B yielded lower induction on effector genes than NPSR1-A, with one notable exception, CD69, a marker of regulatory T cells. We conclude that NPSR1-B is regulating essentially identical set of genes as NPSR1-A, with few, but possibly important exceptions, and that NPSR1-A induces stronger signalling effects than NPSR1-B. Our findings suggest an isoform-specific link to pathogenetic processes in asthma and allergy.
    BMC Pulmonary Medicine 06/2011; 11:39. DOI:10.1186/1471-2466-11-39 · 2.49 Impact Factor
  • American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado; 05/2011
  • [Show abstract] [Hide abstract]
    ABSTRACT: Herpesviruses could contribute to the lung epithelial injury that initiates profibrotic responses in idiopathic pulmonary fibrosis (IPF). We identified herpesviral DNA from IPF and control lung tissue using a multiplex PCR-and microarray-based method. Active herpesviral infection was detected by standard methods, and inflammatory cell subtypes were identified with specific antibodies. Patients that underwent lung transplantation were monitored for signs of herpesviral infection. A total of 11/12 IPF samples were positive for Epstein-Barr virus (EBV) and 10/12 for human herpesvirus 6B (HHV-6B) DNA. Control lung samples (n = 10) were negative for EBV DNA, whereas three samples were positive for HHV-6B. EBV-encoded RNA (EBER) was identified in nine IPF samples and localized mainly to lymphocytic aggregates. HHV-6B antigens were detected in mononuclear cells in IPF lung tissue. CD20+ B lymphocytic aggregates that were surrounded by CD3+ T cells were abundant in IPF lungs. CD23+ cells (activated B cells, EBV-transformed lymphoblasts, and dendritic cells) were observed in the aggregates. IPF patients had no signs of increased herpesviral activation after lung transplantation. Inflammatory cells are the main source of herpesviral DNA in the human IPF lung. Diagnostic tools should be actively used to elucidate whether herpesviral infection affects the pathogenesis, progression, and/or exacerbation of IPF.
    Annals of Medicine 01/2011; 44(2):178-86. DOI:10.3109/07853890.2010.532151 · 4.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Viral infections and abnormal host response are thought to cause epithelial injury in idiopathic pulmonary fibrosis (IPF). To understand IPF pathogenesis, we have used overexpression cell models and expression microarrays to discover genes networked with ELMO domain containing 2 (ELMOD2) gene genetically implicated in IPF. The identified pathways were confirmed in vitro, and ELMOD2 protein expression was characterized in tissue samples. Here 303 genes were significantly altered after ELMOD2 transfection of human alveolar epithelial A549 cell line. The enriched pathways were interferon induction, viral response, antigen processing and presentation, and I-/nuclear factor-kappaB signaling. ELMOD2 showed immunoreactivity in macrophages and type II alveolar epithelial cells in normal human lung. In A549 cells, forced expression of ELMOD2 increased type I and type III interferon mRNA expression, and ELMOD2-specific siRNA molecules inhibited expression of these antiviral cytokines in response to Toll-like receptor three (TLR3) activation. In human macrophages silencing of ELMOD2 inhibited TLR3-dependent expression of type I and type III interferon genes. Influenza A virus infection decreased ELMOD2 mRNA expression in A549 cells and macrophages suggesting negative regulation in viral infections. In summary, our results show that TLR3 pathway is dependent on ELMOD2.-Pulkkinen, V., Bruce, S., Rintahaka, J., Hodgson, U., Laitinen, T., Alenius, H., Kinnula, V. L., Myllärniemi, M., Matikainen, S., Kere, J. ELMOD2, a candidate gene for idiopathic pulmonary fibrosis, regulates antiviral responses.
    The FASEB Journal 12/2009; 24(4):1167-77. DOI:10.1096/fj.09-138545 · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuropeptide S receptor 1 (NPSR1) was recently found to be genetically associated with inflammatory bowel disease in addition to asthma and related traits. Epithelia of several organs express NPSR1 isoforms A and B, including the intestine and the skin, and NPSR1 appears to be upregulated in inflammation. In this study, we used cell lines and tissue samples to characterize the expression of NPSR1 and its ligand neuropeptide S (NPS) in inflammation. We used polyclonal and monoclonal antibodies to investigate the expression of NPS and NPSR1 in intestinal diseases, such as celiac disease and food allergy, and in cutaneous inflammatory disorders. We found that NPSR1-A was expressed by the enteroendocrine cells of the gut. Overall, the expression pattern of NPS was similar to its receptor suggesting an autocrine mechanism. In an NPSR1-A overexpressing cell model, stimulation with NPS resulted in a dose-dependent upregulation of glycoprotein hormone, alpha polypeptide (CGA), tachykinin 1 (TAC1), neurotensin (NTS) and galanin (GAL) encoding peptide hormones secreted by enteroendocrine cells. Because NPSR1 was also expressed in macrophages, neutrophils, and intraepithelial lymphocytes, we demonstrated that stimulation with the pro-inflammatory cytokines tumour necrosis factor alpha and interferon gamma increased NPSR1 expression in the THP-1 monocytic cells. In conclusion, similar to other neuropeptides and their receptors, NPSR1 signalling might play a dual role along the gut-brain axis. The NPS/NPSR1 pathway may participate in the regulation of the peptide hormone production in enteroendocrine cells of the small intestine.
    Neurogastroenterology and Motility 08/2009; 22(1):79-87, e30. DOI:10.1111/j.1365-2982.2009.01366.x · 3.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Idiopathic pulmonary fibrosis (IPF) (histopathology of usual interstitial pneumonia [UIP]) is a progressive disease with poor prognosis. Characteristic features of IPF/UIP include fibroblastic foci, which are patchy lesions of focal, disarranged myofibroblasts. GATA-6 is a transcription factor linked with cell differentiation. Its role in the development of IPF has not previously been investigated. We hypothesized that GATA-6 participates in the differentiation of fibroblasts into myofibroblasts in IPF/UIP lungs. The expression patterns of GATA-6, the mesenchymal marker alpha-smooth muscle actin (alpha-SMA), and markers for proliferation (Ki67) and apoptosis (caspase-3) were analyzed in human IPF/UIP tissue samples. The effects of GATA-6 overexpression and silencing were studied in cell cultures. The results show that the alpha-SMA-positive fibroblastic foci in IPF/UIP lungs are positive for GATA-6, but negative for Ki67 and caspase-3. Cultured human IPF/UIP fibroblasts expressed GATA-6 mRNA, whereas cells from the normal adult lung did not. In cultured A549 lung epithelial cells, the induction of GATA-6 by transforming growth factor-beta1 resulted in simultaneous expression of alpha-SMA and decrease of E-cadherin. The inhibition of GATA-6 expression in fibroblasts showed that GATA-6 mediates the alpha-SMA-inducing signal of transforming growth factor-beta1. In conclusion, the hallmark of IPF/UIP histopathology, the fibroblast focus, consists of differentiated, quiescent cells that prominently express GATA-6.
    American Journal of Respiratory Cell and Molecular Biology 08/2009; 42(5):626-32. DOI:10.1165/rcmb.2009-0021OC · 4.11 Impact Factor
  • A James, V Pulkkinen, SE Dahlen, J Kere, B Dahlen
    American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California; 04/2009
  • American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California; 04/2009
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Little is known about the asthma candidate gene neuropeptide S receptor 1 (NPSR1) in relation to environmental exposures, but recent evidences suggest its role as an effect modifier. To explore the interaction between NPSR1 polymorphisms and environmental exposures related to farming lifestyle and to study the in vitro effects of lipopolysaccharide (LPS) stimulation on NPSR1 expression levels. We studied 3113 children from PARSIFAL, a European cross-sectional study on environmental/lifestyle factors and childhood allergy, partly focused on children brought up on a farm. Information on exposures and outcomes was primarily obtained from parental questionnaires. Seven tagging polymorphisms were analysed in a conserved haplotype block of NPSR1. Multivariate logistic regression was used to evaluate a multiplicative model of interaction. NPSR1 protein and messenger RNA (mRNA) levels in monocytes were measured after LPS stimulation by fluorescence activated cell sorting (FACS) and quantitative real-time polymerase chain reaction (PCR). A strong interaction was seen between current regular contact to farm animals and several NPSR1 polymorphisms, particularly rs323922 and rs324377 (p<0.005), with respect to allergic symptoms. Considering the timing of initiation of such current regular farm animal contact, significant interactions with these and two additional polymorphisms (SNP546333, rs740347) were revealed. In response to LPS, NPSR1-A protein levels in monocytes were upregulated (p = 0.002), as were NPSR1-A mRNA levels (p = 0.02). The effect of farm animal contact on the development of allergic symptoms in children is modified by NPSR1 genetic background.
    Journal of Medical Genetics 03/2008; 46(3):159-67. DOI:10.1136/jmg.2007.055137 · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The neuropeptide S receptor (NPSR1) gene has been associated recently with asthma and maps in a region of chromosome 7 previously linked also to inflammatory bowel disease (IBD). NPSR1 is expressed on the epithelia of several organs including the intestine, and appears to be up-regulated in inflammation. We tested NPSR1 gene polymorphism for association with IBD and verified whether the expression of its 2 major isoforms (NPSR1-A and NPSR1-B) is altered in the intestine of IBD patients. Eight NPSR1 polymorphisms were genotyped in 2490 subjects from 3 cohorts of IBD patients and controls from Italy, Sweden, and Finland. Real-time polymerase chain reaction and immunohistochemistry were used to quantify NPSR1 messenger RNA (mRNA) and protein expression in intestinal biopsy specimens from IBD patients and controls. Global analysis of the whole dataset identified strong association of a NPSR1 haplotype block with IBD (P = .0018) and its 2 major forms: Crohn's disease (CD) (P = .026) and ulcerative colitis (UC) (P = .003). Genetic effects caused by individual haplotypes were identified mainly for the predisposing haplotype H2 in CD (P = .0005) and the protective haplotype H8 in UC (P = .003). NPSR1 mRNA and protein levels were increased in IBD patients compared with controls, and the risk haplotype H2 correlated with higher expression of both NPSR1-A (P = .024) and NPSR1-B (P = .047) mRNAs. NPSR1 polymorphism is associated with IBD susceptibility. Specific NPSR1 alleles might act as genetic risk factors for chronic inflammatory diseases of the epithelial barrier organs.
    Gastroenterology 10/2007; 133(3):808-17. DOI:10.1053/j.gastro.2007.06.012 · 13.93 Impact Factor

Publication Stats

697 Citations
144.67 Total Impact Points

Institutions

  • 2006–2014
    • University of Helsinki
      • • Department of Oral Medicine
      • • Department of Medical Genetics
      Helsinki, Southern Finland Province, Finland
    • Helsinki University Central Hospital
      Helsinki, Southern Finland Province, Finland