S. Vaughan

University of Leicester, Leiscester, England, United Kingdom

Are you S. Vaughan?

Claim your profile

Publications (106)443.06 Total impact

  • Andrew Lobban, William Alston, Simon Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: Using new XMM-Newton observations we detect hard X-ray time lags in the rapid variability of the Compton-thin Seyfert 2 galaxy IRAS 18325-5926. The higher-energy X-ray variations lag behind correlated lower-energy variations by up to ~3ks and the magnitude of the lag increases clearly with energy separation between the energy bands. We find that the lag-energy spectrum has a relatively simple log(E) shape. This is quite different in both shape and magnitude from the lags predicted by simple reflection models, but very similar to the hard X-ray lags often seen in black hole X-ray binaries. We apply several spectral models to the lag-energy spectrum and rule out simple reflection as an origin for the hard lags. We find that both propagating fluctuations embedded in the accretion flow and electron scattering from material embedded in or behind a cold absorbing medium offer equally good fits to the observed low-frequency hard X-ray lags and are both consistent with the time-averaged spectrum. Such models will likely look very different outside of XMM-Newton's observable bandpass, paving the way for future studies with NuSTAR.
    09/2014; 445(3).
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present time series analyses of the full Kepler dataset of Zw 229-15. This Kepler light curve --- with a baseline greater than three years, composed of virtually continuous, evenly sampled 30-minute measurements --- is unprecedented in its quality and precision. We utilize two methods of power spectral analysis to investigate the optical variability and search for evidence of a bend frequency associated with a characteristic optical variability timescale. Each method yields similar results. The first interpolates across data gaps to use the standard Fourier periodogram. The second, using the CARMA-based time-domain modeling technique of Kelly et al. (2014), does not need evenly-sampled data. Both methods find excess power at high frequencies that may be due to Kepler instrumental effects. More importantly both also show strong bends ({\Delta}{\alpha} ~ 2) at timescales of ~5 days, a feature similar to those seen in the X-ray PSDs of AGN but never before in the optical. This observed ~5 day timescale may be associated with one of several physical processes potentially responsible for the variability. A plausible association could be made with light-crossing, dynamical or thermal timescales, depending on the assumed value of the accretion disk size and on unobserved disk parameters such as {\alpha} and H/R. This timescale is not consistent with the viscous timescale, which would be years in a ~10^7 Solar mass AGN such as Zw 229-15. However there must be a second bend on long (>~1 year) timescales, and that feature could be associated with the viscous timescale.
    The Astrophysical Journal 09/2014; 795(1). · 6.73 Impact Factor
  • Source
    Andrew Lobban, Simon Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: IRAS 18325-5926 is an X-ray bright, Compton-thin, type-2 Seyfert galaxy and it was the first Seyfert 2 in which the presence of a broad Fe K-alpha emission line was claimed. However, although the structure of the Fe line appears broad, there is tentative evidence that it may comprise multiple lines. Nevertheless, previous analyses have only consisted of fitting standalone broad components to the Fe K band. Here, we have analyzed all available X-ray CCD data from Suzaku, XMM-Newton and ASCA to fully investigate the nature of the emission complex by testing broad-band physical models and alternative hypotheses. We find that both a model consisting of broad, blurred reflection from an ionized accretion disc and a model consisting of cold, neutral reflection plus narrow emission lines from highly-ionized photoionized gas (log \xi = 3.5) offer statistically comparable fits to the data although the true reality of the Fe line cannot currently be determined with existing data. However, it is hoped that better quality data and improved photon statistics in the Fe K band will allow a more robust distinction between models to be made.
    01/2014; 439(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Near-infrared reverberation measurements have proven to be a valuable tool for mapping the location of hot dust in active galactic nuclei (AGNs). Ground-based campaigns have shown that the K-band continuum varies in response to changes in the optical continuum, and measurements of the K-band lag time give the size scale of the hot dust emission region, which likely corresponds to the dust sublimation radius. Reverberation measurements at longer wavelengths can add valuable information on the dust temperature profile in AGNs and the structure of the putative dusty torus. We have conducted a space based monitoring campaign of the Seyfert 1 galaxy Zw 229-015 using optical data from the Kepler Space Telescope and infrared data (3.6 micron) from the Spitzer Space telescope. We have also augmented the optical data with multiple ground based observatories. We have detected infrared reverberation both on short and long timescales.
    01/2014;
  • Source
    William Alston, Chris Done, Simon Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyse the X-ray time-lags in the Narrow Line Seyfert 1 (NLS1) galaxy PG 1244+026 ($M_{\rm BH}\sim 10^7 M_{\rm sun}$, $L/L_{\rm Edd}\sim 1$). The time delay between the soft (0.3--0.7~keV) and harder (1.2--4.0~keV) variations shows shows the well established switch from hard lags at low frequencies to soft lags at high frequencies. The low frequency hard lags are qualitatively consistent with the propagation of fluctuations model, with some long-timescale response of the reflection component. The high frequency soft lag appears to extend over a wide frequency band, that we divide this into two narrow frequency ranges, and examine the lag as a function of energy for each of these. At high frequencies the soft excess emission is delayed with respect to the harder energy bands, without any corresponding strong, hard X-ray reflection signature. At even higher frequencies a soft lag is seen at the softest energies, as well as tentative evidence for an iron K$\alpha$ reverberation signal. These results point to the importance of reprocessing as well as reflection in determining the lags in NLS1s.
    Monthly Notices of the Royal Astronomical Society 11/2013; 439(2). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By comparing the orbital period distributions of black hole and neutron star low mass X-ray binaries (LMXBs) in the Ritter-Kolb catalogue we show that there is statistical evidence for a dearth of black hole systems at short orbital periods (P_orb < 4h). This could either be due to a true divergence in orbital period distributions of these two types of system, or to black hole LMXBs being preferentially hidden from view at short orbital periods. We explore the latter possibility, by investigating whether black hole LMXBs could be concealed by a switch to radiatively inefficient accretion at low luminosities. The peak luminosity and the duration of X-ray binary outbursts are related to the disc radius and, hence, the orbital period. At short periods, where the peak outburst luminosity drops close to the threshold for radiatively inefficient accretion, black hole LMXBs have lower outburst luminosities, shorter outburst durations and lower X-ray duty cycles than comparable neutron star systems. These factors can combine to severely reduce the detection probability of short period black hole LMXBs relative to those containing neutron stars. We estimate the outburst properties and orbital period distribution of black hole LMXBs using two models of the transition to radiatively inefficient accretion: an instantaneous drop in accretion efficiency (eta) to zero, at a fraction (f) of the Eddington luminosity (L_Edd) and a power-law efficiency decrease, eta \propto \dot{M}^n, for L < f*L_Edd. We show that a population of black hole LMXBs at short orbital periods can only be hidden by a sharp drop in efficiency, either instantaneous or for n >= 3. This could be achieved by a genuine drop in luminosity or through abrupt spectral changes that shift the accretion power out of a given X-ray band.
    Monthly Notices of the Royal Astronomical Society 10/2013; 437(4). · 5.52 Impact Factor
  • Source
    W. N. Alston, S. Vaughan, P. Uttley
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an analysis of the X-ray time lags for the highly variable Seyfert 1 galaxy NGC 4051, based on a series of XMM-Newton observations taken in 2009. We investigate the Fourier frequency dependent time lags in the light curves between the 0.3--1.0 keV and 2.0--5.0 keV energy bands as a function of source flux, including simultaneous modelling of the resulting lag-frequency spectra. We find the shape of the lag-frequency spectra to vary significantly and systematically with source flux. We model the lag-frequency spectra using simple transfer functions, and find that two time lag components are required, one in each energy band. The simplest acceptable fits have only the relative contribution of the lagged component in the hard band varying with flux level, which can be associated with changes in the energy spectrum. We discuss the interpretation of these results in terms of the currently popular models for X-ray time lags.
    Monthly Notices of the Royal Astronomical Society 07/2013; 435(2). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This White Paper, submitted to the recent ESA call for science themes to define its future large missions, advocates the need for a transformational leap in our understanding of two key questions in astrophysics: 1) How does ordinary matter assemble into the large scale structures that we see today? 2) How do black holes grow and shape the Universe? Hot gas in clusters, groups and the intergalactic medium dominates the baryonic content of the local Universe. To understand the astrophysical processes responsible for the formation and assembly of these large structures, it is necessary to measure their physical properties and evolution. This requires spatially resolved X-ray spectroscopy with a factor 10 increase in both telescope throughput and spatial resolving power compared to currently planned facilities. Feedback from supermassive black holes is an essential ingredient in this process and in most galaxy evolution models, but it is not well understood. X-ray observations can uniquely reveal the mechanisms launching winds close to black holes and determine the coupling of the energy and matter flows on larger scales. Due to the effects of feedback, a complete understanding of galaxy evolution requires knowledge of the obscured growth of supermassive black holes through cosmic time, out to the redshifts where the first galaxies form. X-ray emission is the most reliable way to reveal accreting black holes, but deep survey speed must improve by a factor ~100 over current facilities to perform a full census into the early Universe. The Advanced Telescope for High Energy Astrophysics (Athena+) mission provides the necessary performance (e.g. angular resolution, spectral resolution, survey grasp) to address these questions and revolutionize our understanding of the Hot and Energetic Universe. These capabilities will also provide a powerful observatory to be used in all areas of astrophysics.
    06/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the astrophysics of feedback in active galactic nuclei (AGN) is key to understanding the growth and co-evolution of supermassive black holes and galaxies. AGN-driven winds/outflows are potentially the most effective way of transporting energy and momentum from the nuclear scales to the host galaxy, quenching star formation by sweeping away the gas reservoir. Key questions in this field are: 1) how do accretion disks around black holes launch winds/outflows, and how much energy do these carry? 2) How are the energy and metals accelerated in winds/outflows transferred and deposited into the circumgalactic medium? X-ray observations are a unique way to address these questions because they probe the phase of the outflows which carries most of the kinetic energy. We show how a high throughput, high spectral resolution instrument like the X-ray Integral Field Unit (X-IFU) on Athena+ will allow us to address these questions by determining the physical parameters (ionization state, density, temperature, abundances, velocities, geometry, etc.) of the outflows on a dynamical time-scale, in a broad sample of nearby bright AGN. The X-IFU will also allow direct spectral imaging of the impact of these winds on the host galaxy for local AGN, forming a template for understanding AGN at higher redshifts where wind shocks cannot be resolved.
    06/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to discern the physical nature of many gamma-ray sources in the sky, we must look not only in spectral and spatial dimensions, but also understand their temporal variability. However, timing analysis of sources with a highly transient nature, such as magnetar bursts, is difficult: standard Fourier techniques developed for long-term variability generally observed, for example, from AGN often do not apply. Here, we present newly developed timing methods applicable to transient events of all kinds, and show their successful application to magnetar bursts observed with Fermi/GBM. Magnetars are a prime subject for timing studies, thanks to the detection of quasi-periodicities in magnetar Giant Flares and their potential to help shed light on the structure of neutron stars. Using state-of-the art statistical techniques, we search for quasi-periodicities (QPOs) in a sample of bursts from Soft Gamma Repeater SGR J0501+4516 observed with Fermi/GBM and provide upper limits for potential QPO detections. Additionally, for the first time, we characterise the broadband variability behaviour of magnetar bursts and highlight how this new information could provide us with another way to probe these mysterious objects.
    03/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first Kepler monitoring of a strongly variable BL Lac, W2R1926+42. The light curve covers 181 days with ~0.2% errors, 30 minute sampling and >90% duty cycle, showing numerous delta I/I > 25% flares over timescales as short as a day. The flux distribution is highly skewed and non-Gaussian. The variability shows a strong rms-flux correlation with the clearest evidence to date for non-linearity in this relation. We introduce a method to measure periodograms from the discrete autocorrelation function, an approach that may be well-suited to a wide range of Kepler data. The periodogram is not consistent with a simple power-law, but shows a flattening at frequencies below 7x10-5 Hz. Simple models of the power spectrum, such as a broken power law, do not produce acceptable fits, indicating that the Kepler blazar light curve requires more sophisticated mathematical and physical descriptions than currently in use.
    The Astrophysical Journal 02/2013; 766(1). · 6.73 Impact Factor
  • O. González-Martín, S. Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: We have performed a uniform analysis of the power spectrum densities (PSDs) of 104 nearby (z<0.4) active galactic nuclei (AGN) using 209 XMM-Newton/pn observations, including several AGN classes. These PSDs span ~= 3 decades in temporal frequencies, ranging from minutes to days. We have fitted each PSD to two models: (1) a single power-law model and (2) a bending power-law model. A fraction of 72% show significant variability. The PSD of the majority of the variable AGN was well described by a simple power-law with a mean index of α = 2.01+/-0.01. In 15 sources we found that the bending power law model was preferred with a mean slope of α = 3.08+/-0.04 and a mean bend frequency of <ν b > ~= 2 × 10-4 Hz. Only KUG 1031+398 (RE J1034+396) shows evidence for quasi-periodic oscillations. The `fundamental plane' relating variability timescale, black hole mass, and luminosity is demonstrated using the new X-ray timing results presented here together with a compilation of the previously detected timescales from the literature.
    Proceedings of the International Astronomical Union 02/2013; 8(S290):37-40.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of quasi-periodic oscillations (QPOs) in magnetar giant flares has opened up prospects for neutron star asteroseismology. However, with only three giant flares ever recorded, and only two with data of sufficient quality to search for QPOs, such analysis is seriously data limited. We set out a procedure for doing QPO searches in the far more numerous, short, less energetic magnetar bursts. The short, transient nature of these bursts requires the implementation of sophisticated statistical techniques to make reliable inferences. Using Bayesian statistics, we model the periodogram as a combination of red noise at low frequencies and white noise at high frequencies, which we show is a conservative approach to the problem. We use empirical models to make inferences about the potential signature of periodic and quasi-periodic oscillations at these frequencies. We compare our method with previously used techniques and find that although it is on the whole more conservative, it is also more reliable in ruling out false positives. We illustrate our Bayesian method by applying it to a sample of 27 bursts from the magnetar SGR J0501+4516 observed by the Fermi Gamma-ray Burst Monitor, and we find no evidence for the presence of QPOs in any of the bursts in the unbinned spectra, but do find a candidate detection in the binned spectra of one burst. However, whether this signal is due to a genuine quasi-periodic process, or can be attributed to unmodeled effects in the noise is at this point a matter of interpretation.
    The Astrophysical Journal 12/2012; 768(1). · 6.73 Impact Factor
  • Source
    W. N. Alston, S. Vaughan, P. Uttley
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyse 15 XMM-Newton observations of the Seyfert galaxy NGC 4051 obtained over 45 days to determine the ultraviolet (UV) light curve variability characteristics and search for correlated UV/X-ray emission. The UV light curve shows variability on all time scales, however with lower fractional rms than the 0.2-10 keV X-rays. On days-weeks timescales the fractional variability of the UV is Fvar ~ 8%, and on short (~ hours) timescales Fvar ~ 2%. The within-observation excess variance in 4 of the 15 UV observations was found be much higher than the remaining 11. This was caused by large systematic uncertainties in the count rate masking the intrinsic source variance. For the four "good" observations we fit an unbroken power-law model to the UV power spectra with slope -2.0 +/- 0.5. We compute the UV/X-ray Cross-correlation function for the "good" observations and find a correlation of ~ 0.5 at time lag of ~ 3 ks, where the UV lags the X-rays. We also compute for the first time the UV/X-ray Cross-spectrum in the range 0-28.5 ks, and find a low coherence and an average time lag of ~ 3 ks. Combining the 15 XMM-Newton and the Swift observations we compute the DCF over +/-40 days but are unable to recover a significant correlation. The magnitude and direction of the lag estimate from the 4 "good" observations indicates a scenario where ~ 25 % of the UV variance is caused by thermal reprocessing of the incident X-ray emission.
    Monthly Notices of the Royal Astronomical Society 10/2012; 429(1). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultra-dense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m^2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO's to year-long transient outbursts. In this paper we report the current status of the project.
    Experimental Astronomy 09/2012; 34(2). · 2.97 Impact Factor
  • Source
    O. Gonzalez-Martin, S. Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: AGN, powered by accretion onto SMBHs, are thought to be scaled up versions of Galactic black hole X-ray binaries (BH-XRBs). In the past few years evidence of such correspondence include similarities in the broadband shape of the X-ray variability power spectra, with characteristic bend times-scales scaling with mass. We have performed a uniform analysis of the power spectrum densities (PSDs) of 104 nearby (z<0.4) AGN using 209 XMM-Newton/pn observations. The PSDs have been estimated in three energy bands: 0.2-10, 0.2-2, and 2-10 keV. The sample comprises 61 Type-1 AGN, 21 Type-2 AGN, 15 NLSy1, and 7 BLLACS. We have fitted each PSD to two models: (1) a single power-law model and (2) a bending power-law model. Among the entire sample, 72% show significant variability in at least one of the three bands tested. A high percentage of low-luminosity AGN do not show any significant variability. The PSD of the majority of the variable AGN was well described by a simple power-law with a mean index of 2. In 15 sources we found that the bending power law model was preferred with a mean slope of 3 and a mean bend frequency of 2.E-04 Hz. Only KUG1031+398 (REJ1034+396) shows evidence for quasi-periodic oscillations. The `fundamental plane' relating variability timescale, black hole mass, and luminosity is demonstrated using the new X-ray timing results presented here together with a compilation of the previously detected timescales from the literature. Both quantitative (i.e. scaling with BH mass) and qualitative (overall PSD shapes) found in this sample of AGN are in agreement with the expectations for the SMBHs and BH-XRBs being the same phenomenon scaled-up with the size of the BH. The steep PSD slopes above the high frequency bend bear a closer resemblance to those of the `soft/thermal dominated' BH-XRB states than other states.
    Astronomy and Astrophysics 05/2012; · 5.08 Impact Factor
  • Source
    L. M. Heil, S. Vaughan, P. Uttley
    [Show abstract] [Hide abstract]
    ABSTRACT: We have investigated the short term linear relation between the rms variability and the flux in 1,961 observations of 9 black hole X-ray binaries. The rms-flux relation for the 1-10 Hz range is ubiquitously observed in any observation with good variability signal to noise (> 3 % 1-10 Hz fractional rms). This concurs with results from a previous study of Cygnus X-1 (Gleissner et. al. 2004), and extends detection of the rms-flux relation to a wider range of states. We find a strong dependence of the flux intercept of the rms-flux relation on source state; as the source transitions from the hard state into the hard intermediate state the intercept becomes strongly positive. We find little evidence for flux dependence of the broad-band noise within the PSD shape, excepting a small subset of observations from one object in an anomalous soft-state. We speculate that the ubiquitous linear rms-flux relation in the broad band noise of this sample, representing a range of different states and objects, indicates that its formation mechanism is an essential property of the luminous accretion flow around black holes.
    Monthly Notices of the Royal Astronomical Society 02/2012; 422(3). · 5.52 Impact Factor
  • Source
    K. A. Pounds, S. Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: An extended XMM-Newton observation of the Seyfert 1 galaxy NGC 4051 in 2009 detected a photo-ionized outflow with a complex absorption line velocity structure and a broad correlation of velocity with ionization parameter, shown in Pounds et al (2011) to be consistent with a highly ionized, high velocity wind running into the interstellar medium or previous ejecta, losing much of its kinetic energy in the resultant strong shock. In the present paper we examine the Fe K spectral region in more detail and find support for two distinct velocity components in the highly ionized absorber, with values corresponding to the putative fast wind (~ 0.12c) and the post-shock flow (v ~ 5000-7000 km/s). The Fe K absorption line structure is seen to vary on a orbit-to-orbit timescale, apparently responding to both a short term increase in ionizing flux and - perhaps more generally - to changes in the soft X-ray (and simultaneous UV) luminosity. The latter result is particularly interesting in providing independent support for the existence of shocked gas being cooled primarily by Compton scattering of accretion disc photons. The Fe K emission is represented by a narrow fluorescent line from near-neutral matter, with a weak red wing modelled here by a relativistic diskline. The narrow line flux is quasi-constant throughout the 45-day 2009 campaign, but is resolved, with a velocity width consistent with scattering from a component of the post-shock flow. Evidence for a P Cygni profile is seen in several individual orbit spectra for resonance transitions in both Fe XXV and Fe XXVI.
    Monthly Notices of the Royal Astronomical Society 02/2012; 423(1). · 5.52 Impact Factor
  • Source
    Didier Barret, Simon Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: High frequency quasi-periodic oscillations (QPOs) from weakly magnetized neutron stars display rapid frequency variability and high coherence with quality factors up to at least 200 at frequencies around 850 Hz. Their parameters have been estimated so far from standard min(chi2) fitting techniques, after combining a large number of Power Density Spectra (PDS), as to have the powers normally distributed. Accounting for the statistical properties of PDS, we apply a maximum likelihood method to derive the QPO parameters in the non Gaussian regime. The method presented is general, easy to implement and can be applied to fitting individual PDS, several PDS simultaneously or their average, and is obviously not specific to the analysis of kHz QPO data. It applies to the analysis of any PDS optimized in frequency resolution and for low frequency variability or PDS containing features whose parameters vary on short timescales, as is the case for kHz QPOs. It is equivalent to the standard chi^2 minimization fitting when the number of PDS fitted is large. The accuracy, reliability and superiority of the method is demonstrated with simulations of synthetic PDS. We show that the maximum likelihood estimates of the QPO parameters are asymptotically unbiased, and have negligible bias when the QPO is reasonably well detected. By contrast, we show that the standard min(chi2) fitting method gives biased parameters with larger uncertainties. The maximum likelihood fitting method is applied to a subset of archival Rossi X-ray Timing Explorer (RXTE) data of the neutron star X-ray binary 4U1608-522. We show that the kHz QPO parameters can be measured on 8 second timescales and that the time evolution of the frequency is consistent with a random walk. This enables us to estimate the intrinsic quality factor of the QPO to be around 260, whereas previous analysis indicated a maximum value around 200 (abridged).
    The Astrophysical Journal 12/2011; 746(2). · 6.73 Impact Factor
  • S. Vaughan, R. J. Bailey, D. G. Smith
    [Show abstract] [Hide abstract]
    ABSTRACT: We discuss the detection of cyclic signals in stratigraphic `time series' using spectral methods. The dominant source of variance in the stratigraphic record is red noise, which greatly complicates the process of searching for weak periodic signals. We highlight two issues that are more significant than generally appreciated. The first is the lack of a correction for `multiple tests' - many independent frequencies are examined for periods but using a significance test appropriate for examination of a single frequency. The second problem is the poor choice of null hypothesis used to model the spectrum of non-periodic variations. Stratigraphers commonly assume the noise is a first-order autoregressive process - the AR(1) model - which in practice often gives a very poor match to real data; a fact that goes largely unnoticed because model checking is rarely performed. These problems have the effect of raising the number of false positives far above the expected rate, to the extent that the literature on spatial stratigraphic cycles is dominated by false positives. In turn these will distort the construction of astronomically calibrated timescales, lead to inflated estimates of the physical significance of deterministic forcing of the climate and depositional processes in the pre-Neogene, and may even bias models of solar system dynamics on very long timescales. We make suggestions for controlling the false positive rate, and emphasize the value of Monte Carlo simulations to validate and calibrate analysis methods.
    Paleoceanography 12/2011; 26(4):4211-. · 3.30 Impact Factor

Publication Stats

2k Citations
443.06 Total Impact Points

Institutions

  • 1999–2014
    • University of Leicester
      • Department of Physics and Astronomy
      Leiscester, England, United Kingdom
  • 2002–2004
    • University of Cambridge
      • Institute of Astronomy
      Cambridge, England, United Kingdom
  • 1999–2002
    • University of California, Los Angeles
      • Department of Physics and Astronomy
      Los Angeles, CA, United States