A. Lahteenmaki

Aalto University, Helsinki, Uusimaa, Finland

Are you A. Lahteenmaki?

Claim your profile

Publications (89)235.16 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We observed the prototype blazar, BL Lacertae, extensively in optical and radio bands during an active phase in the period 2010--2013 when the source showed several prominent outbursts. We searched for possible correlations and time lags between the optical and radio band flux variations using multifrequency data to learn about the mechanisms producing variability. During an active phase of BL Lacertae, we searched for possible correlations and time lags between multifrequency light curves of several optical and radio bands. We tried to estimate any possible variability timescales and inter-band lags in these bands. We performed optical observations in B, V, R and I bands from seven telescopes in Bulgaria, Georgia, Greece and India and obtained radio data at 36.8, 22.2, 14.5, 8 and 4.8 GHz frequencies from three telescopes in Ukraine, Finland and USA. Significant cross-correlations between optical and radio bands are found in our observations with a delay of cm-fluxes with respect to optical ones of ~250 days. The optical and radio light curves do not show any significant timescales of variability. BL Lacertae showed many optical 'mini-flares' on short time-scales. Variations on longer term timescales are mildly chromatic with superposition of many strong optical outbursts. In radio bands, the amplitude of variability is frequency dependent. Flux variations at higher radio frequencies lead the lower frequencies by days or weeks. The optical variations are consistent with being dominated by a geometric scenario where a region of emitting plasma moves along a helical path in a relativistic jet. The frequency dependence of the variability amplitude supports an origin of the observed variations intrinsic to the source.
  • [Show abstract] [Hide abstract]
    ABSTRACT: ACCEPTED
    Monthly Notices of the Royal Astronomical Society 08/2015; · 5.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present an analysis of the multiwavelength behaviour of the blazar OJ 248 at z = 0.939 in the period 2006–2013. We use low-energy data (optical, near-infrared, and radio) obtained by 21 observatories participating in the Gamma-Ray Large Area Space Telescope (GLAST)-AGILE Support Program of the Whole Earth Blazar Telescope, as well as data from the Swift (optical–UV and X-rays) and Fermi (γ-rays) satellites, to study flux and spectral variability and correlations among emissions in different bands. We take into account the effect of absorption by the Damped Lyman α intervening system at z = 0.525. Two major outbursts were observed in 2006–2007 and in 2012–2013 at optical and near-IR wavelengths, while in the high-frequency radio light curves prominent radio outbursts are visible peaking at the end of 2010 and beginning of 2013, revealing a complex radio–optical correlation. Cross-correlation analysis suggests a delay of the optical variations after the γ-ray ones of about a month, which is a peculiar behaviour in blazars. We also analyse optical polarimetric and spectroscopic data. The average polarization percentage P is less than 3 per cent, but it reaches ∼19 per cent during the early stage of the 2012–2013 outburst. A vague correlation of P with brightness is observed. There is no preferred electric vector polarization angle and during the outburst the linear polarization vector shows wide rotations in both directions, suggesting a complex behaviour/structure of the jet and possible turbulence. The analysis of 140 optical spectra acquired at the Steward Observatory reveals a strong Mg ii broad emission line with an essentially stable flux of 6.2 × 10− 15 erg cm− 2 s− 1 and a full width at half-maximum of 2053 km s− 1.
    Monthly Notices of the Royal Astronomical Society 07/2015; 450(3):2677. DOI:10.1093/mnras/stv823 · 5.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: (abridged) We discuss the Galactic foreground emission between 20 and 100GHz based on observations by Planck/WMAP. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with RRL templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Halpha emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (~30%) of Halpha having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak ranging from below 20GHz to more than 50GHz. There is a strong tendency for the spinning dust component near many prominent HII regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photodissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the commander solution finds more anomalous microwave emission than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys (5-20GHz), will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck/WMAP data to make the highest S/N ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure...
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims. The high energy spectrum of 3C 273 is usually understood in terms of inverse-Compton emission in a relativistic leptonic jet. This model predicts variability patterns and delays that could be tested with simultaneous observations from the radio to the GeV range. Methods. The instruments IBIS, SPI, JEM-X on board INTEGRAL, PCA on board RXTE, and LAT on board Fermi have enough sensitivity to follow the spectral variability of 3C 273 from the keV to the GeV. We looked for correlations between the different energy bands, including radio data at 37 GHz collected at the Mets\"ahovi Radio Observatory and built quasi-simultaneous multiwavelength spectra in the high energy domain when the source is flaring either in the X-rays or in the {\gamma} rays. Results. Both temporal and spectral analysis suggest a two-component model to explain the complete high energy spectrum. X-ray emission is likely dominated by a Seyfert-like component while the {\gamma}-ray emission is dominated by a blazar-like component produced by the relativistic jet. The variability of the blazar-like component is discussed, comparing the spectral parameters in the two different spectral states. Changes of the electron Lorentz factor are found to be the most likely source of the observed variability.
    Astronomy and Astrophysics 03/2015; 576. DOI:10.1051/0004-6361/201424644 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be $n_\mathrm{s} = 0.968 \pm 0.006$ and tightly constrain its scale dependence to $d n_s/d \ln k =-0.003 \pm 0.007$ when combined with the Planck lensing likelihood. When the high-$\ell$ polarization data is included, the results are consistent and uncertainties are reduced. The upper bound on the tensor-to-scalar ratio is $r_{0.002} < 0.11$ (95% CL), consistent with the B-mode polarization constraint $r< 0.12$ (95% CL) obtained from a joint BICEP2/Keck Array and Planck analysis. These results imply that $V(\phi) \propto \phi^2$ and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as $R^2$ inflation. Three independent methods reconstructing the primordial power spectrum are investigated. The Planck data are consistent with adiabatic primordial perturbations. We investigate inflationary models producing an anisotropic modulation of the primordial curvature power spectrum as well as generalized models of inflation not governed by a scalar field with a canonical kinetic term. The 2015 results are consistent with the 2013 analysis based on the nominal mission data.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints from an analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP data leads to a tighter constraint of r < 0.09. We find no evidence for isocurvature perturbations or cosmic defects. The equation of state of dark energy is constrained to w = -1.006 +/- 0.045. Standard big bang nucleosynthesis predictions for the Planck LCDM cosmology are in excellent agreement with observations. We investigate annihilating dark matter and deviations from standard recombination, finding no evidence for new physics. The Planck results for base LCDM are in agreement with BAO data and with the JLA SNe sample. However the amplitude of the fluctuations is found to be higher than inferred from rich cluster counts and weak gravitational lensing. Apart from these tensions, the base LCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Swift/UVOT observed magnitudes of all the observations performed on all the sources in the list.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Files in QDP format (.qdp;.pco) and PS of the Spectral Energy Distributions (SEDs) in Figs. 8-13.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 43 pages, 25 figures, 12 tables ; Received: 25 March 2013 / Accepted: 28 January 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyse the implications of the Planck data for cosmic inflation. The Planck nominal mission temperature anisotropy measurements, combined with the WMAP large-angle polarization, constrain the scalar spectral index to be ns = 0:9603 � 0:0073, ruling out exact scale invariance at over 5�: Planck establishes an upper bound on the tensor-to-scalar ratio of r < 0:11 (95% CL). The Planck data thus shrink the space of allowed standard inflationary models, preferring potentials with V00 < 0. Exponential potential models, the simplest hybrid inflationary models, and monomial potential models of degree n � 2 do not provide a good fit to the data. Planck does not find statistically significant running of the scalar spectral index, obtaining dns=dln k = 􀀀0:0134 � 0:0090. We verify these conclusions through a numerical analysis, which makes no slowroll approximation, and carry out a Bayesian parameter estimation and model-selection analysis for a number of inflationary models including monomial, natural, and hilltop potentials. For each model, we present the Planck constraints on the parameters of the potential and explore several possibilities for the post-inflationary entropy generation epoch, thus obtaining nontrivial data-driven constraints. We also present a direct reconstruction of the observable range of the inflaton potential. Unless a quartic term is allowed in the potential, we find results consistent with second-order slow-roll predictions. We also investigate whether the primordial power spectrum contains any features. We find that models with a parameterized oscillatory feature improve the fit by � 2 e� � 10; however, Bayesian evidence does not prefer these models. We constrain several single-field inflation models with generalized Lagrangians by combining power spectrum data with Planck bounds on fNL. Planck constrains with unprecedented accuracy the amplitude and possible correlation (with the adiabatic mode) of non-decaying isocurvature fluctuations. The fractional primordial contributions of cold dark matter (CDM) isocurvature modes of the types expected in the curvaton and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL), respectively. In models with arbitrarily correlated CDM or neutrino isocurvature modes, an anticorrelated isocurvature component can improve the 2 e� by approximately 4 as a result of slightly lowering the theoretical prediction for the ` <� 40 multipoles relative to the higher multipoles. Nonetheless, the data are consistent with adiabatic initial conditions.
    Astronomy and Astrophysics 11/2014; 571(A22):1. · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Large Area Telescope on board the Fermi Gamma-ray Space Telescope detected a strong γ-ray flare on 2011 May 15 from a source identified as 4C +49.22, a flat spectrum radio quasar (FSRQ) also known as S4 1150+49. This blazar, characterized by a prominent radio–optical–X-ray jet, was in a low γ-ray activity state during the first years of Fermi observations. Simultaneous observations during the quiescent, outburst and post-flare γ-ray states were obtained by Swift, Planck and optical–IR–radio telescopes (Instituto Nacional de Astrofísica, Óptica y Electrónica, Catalina Sky Survey, Very Long Baseline Array [VLBA], Metsähovi). The flare is observed from microwave to X-ray bands with correlated variability and the Fermi, Swift and Planck data for this FSRQ show some features more typical of BL Lac objects, like the synchrotron peak in the optical band that outshines the thermal blue-bump emission, and the X-ray spectral softening. Multi-epoch VLBA observations show the ejection of a new component close in time with the GeV γ-ray flare. The radio-to-γ-ray spectral energy distribution is modelled and fitted successfully for the outburst and the post-flare epochs using either a single flaring blob with two emission processes (synchrotron self-Compton (SSC), and external-radiation Compton), and a two-zone model with SSC-only mechanism.
    Monthly Notices of the Royal Astronomical Society 09/2014; 445(4). DOI:10.1093/mnras/stu2011 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have conducted a multiwavelength survey of 42 radio loud narrow-1ine Seyfert 1 galaxies (RLNLS1s), selected by searching among all the known sources of this type and omitting those with steep radio spectra. We analyse data from radio frequencies to X-rays, and supplement these with information available from online catalogs and the literature in order to cover the full electromagnetic spectrum. This is the largest known multiwavelength survey for this type of source. We detected 90% of the sources in X-rays and found 17% at gamma rays. Extreme variability at high energies was also found, down to timescales as short as hours. In some sources, dramatic spectral and flux changes suggest interplay between a relativistic jet and the accretion disk. The estimated masses of the central black holes are in the range ∼106−8M⊙, smaller than those of blazars, while the accretion luminosities span a range from ∼0.01 to ∼0.49 times the Eddington limit, with an outlier at 0.003. The distribution of the calculated jet power spans a range from ∼1042.6 to ∼1045.6 erg s−1, generally lower than quasars and BL Lac objects, but partially overlapping with the latter. Once normalised by the mass of the central black holes, the jet power of the three types of active galactic nuclei are consistent with each other, indicating the scalability of the jet. Despite the observational differences, the central engine of RLNLS1s is apparently quite similar to that of blazars. The historical difficulties in finding radio-loud narrow-line Seyfert 1 galaxies might be due to their low power and to intermittent jet activity.
    Astronomy and Astrophysics 09/2014; 575:A13. DOI:10.1051/0004-6361/201424972 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of rapidly variable Very High Energy (VHE; E > 100 GeV) γ-ray emission from 4C +21.35 (PKS 1222+216) by MAGIC on 2010 June 17, triggered by the high activity detected by the Fermi Large Area Telescope (LAT) in high energy (HE; E > 100 MeV) γ-rays, poses intriguing questions on the location of the γ-ray emitting region in this flat spectrum radio quasar (FSRQ). We present multifrequency data of 4C +21.35 collected from centimeter to VHE during 2010 to investigate the properties of this source and discuss a possible emission model. The first hint of detection at VHE was observed by MAGIC on 2010 May 3, soon after a γ-ray flare detected by Fermi-LAT that peaked on April 29. The same emission mechanism may therefore be responsible for both the HE and VHE emission during the 2010 flaring episodes. Two optical peaks were detected on 2010 April 20 and June 30, close in time but not simultaneous with the two γ-ray peaks, while no clear connection was observed between the X-ray and γ-ray emission. An increasing flux density was observed in radio and mm bands from the beginning of 2009, in accordance with the increasing γ-ray activity observed by Fermi-LAT, and peaking on 2011 January 27 in the mm regime (230 GHz). We model the spectral energy distributions (SEDs) of 4C +21.35 for the two periods of the VHE detection and a quiescent state, using a one-zone model with the emission coming from a very compact region outside the broad line region. The three SEDs can be fit with a combination of synchrotron self-Compton and external Compton emission of seed photons from a dust torus, changing only the electron distribution parameters between the epochs. The fit of the optical/UV part of the spectrum for 2010 April 29 seems to favor an inner disk radius of <6 gravitational radii, as one would expect from a prograde-rotating Kerr black hole.
    The Astrophysical Journal 04/2014; · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: At very high energy (VHE, E> 100 GeV), we count only three blazars of the flat spectrum radio quasars (FSRQs) type to date. The MAGIC experiment detected all three of them; here we present MAGIC observations of 3C 279 and PKS 1510-089. 3C 279 was observed in 2011, without a significant detection, hence upper limits on the differential flux have been computed. The MAGIC observations of PKS 1510-089 in 2012 were triggered by alerts of high activity states and resulted in a significant detection. MAGIC observations are complemented with simultaneous multiwavelength observations in high energy γ rays, X-rays, optical and radio wavelengths and polarization measurements. With the study of the spectral features and the variability observed, we aim to identify the physical processes responsible for the behavior of this source class. In particular, we propose coherent scenarios, which take into account both the modeling of the spectral energy distribution and the constraints obtained from the lightcurves.
    02/2014; 28. DOI:10.1142/S2010194514601768
  • [Show abstract] [Hide abstract]
    ABSTRACT: 18 pages, 16 figures ; Received: 20 March 2013 / Accepted: 10 April 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Opacity-driven shifts of the apparent VLBI core position with frequency (the "core shift" effect) is a promising tool to probe physical conditions in the innermost parts of radio jets in active galactic nuclei. We present the first detailed investigation of the core shift effect in the brightest gamma-ray blazar 3C 454.3 using multiple techniques: direct core position and size measurements with simultaneous 4.6--43 GHz VLBA observations and a time lag analysis of 4.8--37 GHz radio lightcurves obtained with the 26 m UMRAO, 22 m CrAO, and 14 m Metsahovi radio telescopes in 2007--2009. The remarkable agreement found between the results obtained with different techniques supports the standard Konigl model as an appropriate description of jet physics in the VLBI core region. The distance of the core from the jet origin r_c(f), the core size W(f), and the lightcurve time lag \Delta T(f) all depend on the observing frequency f as r_c(f) ~ W(f) ~ \Delta T(f) ~ f^-1/k. We find the value of the coefficient to be in the range k=0.6--0.8, consistent with the synchrotron self-absorption being the dominating opacity mechanism in the jet. No difference between the frequency dependence of r_c(f) and W(f) is observed, which suggests that the external pressure is not significant for the jet geometry in the cm-band core region of 3C 454.3. Assuming equipartition, we estimate the magnetic field strength at 1 pc from the jet origin to be B_1 ~ 0.4 G, and it scales with distance r as B = 0.4(r/r_1)^-0.8 G. The total kinetic power of the jet, assuming that it is composed of pair plasma, is about 10^44 ergs/s. An electron/proton jet would be about two thousand times more powerful.
    Monthly Notices of the Royal Astronomical Society 07/2013; 437(4). DOI:10.1093/mnras/stt2133 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the Planck likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations. We use this likelihood to derive the Planck CMB power spectrum over three decades in l, covering 2 <= l <= 2500. The main source of error at l <= 1500 is cosmic variance. Uncertainties in small-scale foreground modelling and instrumental noise dominate the error budget at higher l's. For l < 50, our likelihood exploits all Planck frequency channels from 30 to 353 GHz through a physically motivated Bayesian component separation technique. At l >= 50, we employ a correlated Gaussian likelihood approximation based on angular cross-spectra derived from the 100, 143 and 217 GHz channels. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on cosmological parameters. We find good internal agreement among the high-l cross-spectra with residuals of a few uK^2 at l <= 1000. We compare our results with foreground-cleaned CMB maps, and with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. The best-fit LCDM cosmology is in excellent agreement with preliminary Planck polarisation spectra. The standard LCDM cosmology is well constrained by Planck by l <= 1500. For example, we report a 5.4 sigma deviation from n_s /= 1. Considering various extensions beyond the standard model, we find no indication of significant departures from the LCDM framework. Finally, we report a tension between the best-fit LCDM model and the low-l spectrum in the form of a power deficit of 5-10% at l <~ 40, significant at 2.5-3 sigma. We do not elaborate further on its cosmological implications, but note that this is our most puzzling finding in an otherwise remarkably consistent dataset. (Abridged)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rotational transition lines of CO play a major role in molecular radio astronomy and in particular in the study of star formation and the Galactic structure. Although a wealth of data exists in the Galactic plane and some well-known molecular clouds, there is no available CO high sensitivity all-sky survey to date. Such all-sky surveys can be constructed using the \Planck\ HFI data because the three lowest CO rotational transition lines at 115, 230 and 345 GHz significantly contribute to the signal of the 100, 217 and 353 GHz HFI channels respectively. Two different component separation methods are used to extract the CO maps from Planck HFI data. The maps obtained are then compared to one another and to existing external CO surveys. From these quality checks the best CO maps in terms of signal to noise and/or residual foreground contamination are selected. Three sets of velocity-integrated CO emission maps are produced: Type 1 maps of the CO (1-0), (2-1), and (3-2) rotational transitions with low foreground contamination but moderate signal-to-noise ratio; Type 2 maps for the (1-0) and (2-1) transitions with a better signal-to-noise ratio; and one Type 3 map, a line composite map with the best signal-to-noise ratio in order to locate the faintest molecular regions. The maps are described in detail. They are shown to be fully compatible with previous surveys of parts of the Galactic Plane and also of fainter regions out of the Galactic plane. The Planck HFI velocity-integrated CO maps for the (1-0), (2-1), and (3-2) rotational transitions provide an unprecedented all-sky CO view of the Galaxy. These maps are also of great interest to monitor potential CO contamination on CMB \Planck\ studies.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have constructed the first all-sky map of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 100 to 857 GHz frequency channel maps from the Planck survey. These maps show an obvious galaxy cluster tSZ signal that is well matched with blindly detected clusters in the Planck SZ catalogue. To characterize the signal in the tSZ map we have computed its angular power spectrum. At large angular scales ($\ell < 60$), the major foreground contaminant is the diffuse thermal dust emission. At small angular scales ($\ell > 500$) the clustered Cosmic Infrared Background (CIB) and residual point sources are the major contaminants. These foregrounds are carefully modelled and subtracted. We measure the tSZ power spectrum in angular scales, $0.17^{\circ} \lesssim \theta \lesssim 3.0^{\circ}$, that were previously unexplored. The measured tSZ power spectrum is consistent with that expected from the Planck catalogue of SZ sources, with additional clear evidence of signal from unresolved clusters and, potentially, diffuse warm baryons. We use the tSZ power spectrum to obtain the following cosmological constraints: $\sigma_8(\Omega_{\mathrm{m}}/0.28)^{3.2/8.1}=0.784 \pm 0.016 (68% C.L.). Marginalized band-powers of the Planck tSZ power spectrum and the best-fit model are given. The non-Gaussianity of the Compton parameter map is further characterized by computing its 1D probability distribution function and its bispectrum. These are used to place additional independent constraints on $\sigma_{8}$.

Publication Stats

912 Citations
235.16 Total Impact Points

Institutions

  • 2010–2015
    • Aalto University
      • • Department of Radio Science and Engineering
      • • Metsähovin radiotutkimusasema
      Helsinki, Uusimaa, Finland
  • 2008–2014
    • University of Helsinki
      Helsinki, Southern Finland Province, Finland
  • 2009–2011
    • University of Michigan
      • Department of Astronomy
      Ann Arbor, Michigan, United States
    • Dublin Institute for Advanced Studies
      Dublin, Leinster, Ireland