Ming-Tsan Su

University of Michigan, Ann Arbor, MI, United States

Are you Ming-Tsan Su?

Claim your profile

Publications (1)4.57 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Activation of transforming growth factor β receptors causes the phosphorylation and nuclear translocation of Smad proteins, which then participate in the regulation of expression of target genes. We describe a novel Smad-interacting protein, SIP1, which was identified using the yeast two-hybrid system. Although SIP1 interacts with the MH2 domain of receptor-regulated Smads in yeast andin vitro, its interaction with full-length Smads in mammalian cells requires receptor-mediated Smad activation. SIP1 is a new member of the δEF1/Zfh-1 family of two-handed zinc finger/homeodomain proteins. Like δEF1, SIP1 binds to 5′-CACCT sequences in different promoters, including the Xenopus brachyury promoter. Overexpression of either full-length SIP1 or its C-terminal zinc finger cluster, which bind to the Xbra2promoter in vitro, prevented expression of the endogenousXbra gene in early Xenopus embryos. Therefore, SIP1, like δEF1, is likely to be a transcriptional repressor, which may be involved in the regulation of at least one immediate response gene for activin-dependent signal transduction pathways. The identification of this Smad-interacting protein opens new routes to investigate the mechanisms by which transforming growth factor β members exert their effects on expression of target genes in responsive cells and in the vertebrate embryo.
    Journal of Biological Chemistry 07/1999; 274(29):20489-20498. DOI:10.1074/jbc.274.29.20489 · 4.57 Impact Factor