Rogier W Sanders

Academisch Medisch Centrum Universiteit van Amsterdam, Amsterdamo, North Holland, Netherlands

Are you Rogier W Sanders?

Claim your profile

Publications (101)637.18 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The HIV envelope glycoprotein (Env) trimer undergoes receptor-induced conformational changes that drive fusion of the viral and cellular membranes. Env conformational changes have been observed using low-resolution electron microscopy, but only large-scale rearrangements have been visible. Here, we use hydrogen-deuterium exchange and oxidative labeling to gain a more precise understanding of the unliganded and CD4-bound forms of soluble Env trimers (SOSIP.664), including their glycan composition. CD4 activation induces the reorganization of bridging sheet elements, V1/V2 and V3, much of the gp120 inner domain, and the gp41 fusion subunit. Two CD4 binding site-targeted inhibitors have substantially different effects: NBD-556 partially mimics CD4-induced destabilization of the V1/V2 and V3 crown, whereas BMS-806 only affects regions around the gp120/gp41 interface. The structural information presented here increases our knowledge of CD4- and small molecule-induced conformational changes in Env and the allosteric pathways that lead to membrane fusion.
    Structure (London, England : 1993). 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The trimeric envelope glycoproteins (Env) on the surface of HIV-1 virions are the targets for neutralizing antibodies (NAbs). No candidate HIV-1 immunogen has yet induced potent, broadly active NAbs (bNAbs). Part of the explanation may be that previously tested Env proteins inadequately mimic the functional, native Env complex. Trimerization and the proteolytic processing of Env precursors into gp120 and gp41 profoundly alter antigenicity, but soluble cleaved trimers are too unstable to serve as immunogens. By introducing stabilizing mutations (SOSIP), we constructed soluble, cleaved Env trimers derived from the HIV-1 subtype A isolate BG505 that resemble native Env spikes on virions both structurally and antigenically.
    Retrovirology. 05/2014; 11(1):41.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recombinant soluble, cleaved HIV-1 envelope glycoprotein SOSIP.664 gp140 trimers based on the subtype A BG505 sequence are being studied structurally and tested as immunogens in animals. For these trimers to become a vaccine candidate for human trials, they would need to be made in appropriate amounts at an acceptable quality. Accomplishing such tasks by transient transfection is likely to be challenging. The traditional way to express recombinant proteins in large amounts is via a permanent cell line, usually of mammalian origin. Making cell lines that produce BG505 SOSIP.664 trimers requires the co-expression of the Furin protease to ensure that the cleavage site between the gp120 and gp41 subunits is fully utilized. We designed a vector capable of expressing Env and Furin, and used it to create Stable 293 T and CHO Flp-InTMcell lines through site-specific recombination. Both lines produce high quality, cleaved trimers at yields of up to 12-15 mg per 1 x 109 cells. Trimer expression at such levels was maintained for up to 30 days (10 passages) after initial seeding and was consistently superior to what could be achieved by transient transfection. Electron microscopy studies confirm that the purified trimers have the same native-like appearance as those derived by transient transfection and used to generate high-resolution structures. They also have appropriate antigenic properties, including the presentation of the quaternary epitope for the broadly neutralizing antibody PGT145. The BG505 SOSIP.664 trimer-expressing cell lines yield proteins of an appropriate quality for structural studies and animal immunogenicity experiments. The methodology is suitable for making similar lines under Good Manufacturing Practice conditions, to produce trimers for human clinical trials. Moreover, any env gene can be incorporated into this vector system, allowing the manufacture of SOSIP trimers from multiple genotypes, either by transient transfection or from stable cell lines.
    Retrovirology 04/2014; 11(1):33. · 5.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Broadly neutralizing HIV antibodies are much sought after (a) to guide vaccine design, both as templates and as indicators of the authenticity of vaccine candidates, (b) to assist in structural studies, and (c) to serve as potential therapeutics. However, the number of targets on the viral envelope spike for such antibodies has been limited. Here, we describe a set of human monoclonal antibodies that define what is, to the best of our knowledge, a previously undefined target on HIV Env. The antibodies recognize a glycan-dependent epitope on the prefusion conformation of gp41 and unambiguously distinguish cleaved from uncleaved Env trimers, an important property given increasing evidence that cleavage is required for vaccine candidates that seek to mimic the functional HIV envelope spike. The availability of this set of antibodies expands the number of vaccine targets on HIV and provides reagents to characterize the native envelope spike.
    Immunity 04/2014; · 19.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: All previously characterized broadly neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) target one of four major sites of vulnerability. Here, we define and structurally characterize a unique epitope on Env that is recognized by a recently discovered family of human monoclonal antibodies (PGT151-PGT158). The PGT151 epitope is comprised of residues and glycans at the interface of gp41 and gp120 within a single protomer and glycans from both subunits of a second protomer and represents a neutralizing epitope that is dependent on both gp120 and gp41. Because PGT151 binds only to properly formed, cleaved trimers, this distinctive property, and its ability to stabilize Env trimers, has enabled the successful purification of mature, cleaved Env trimers from the cell surface as a complex with PGT151. Here we compare the structural and functional properties of membrane-extracted Env trimers from several clades with those of the soluble, cleaved SOSIP gp140 trimer.
    Immunity 04/2014; · 19.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytokines are often used as adjuvants to increase the immunogenicity of vaccines because they can improve the immune response and/or direct it into a desired direction. As an alternative to codelivering Ags and cytokines separately, they can be fused into a composite protein, with the advantage that both moieties act on the same immune cells. The HIV-1 envelope glycoprotein (Env) spike, located on the outside of virus particles and the only relevant protein for the induction of neutralizing Abs, is poorly immunogenic. The induction of anti-Env Abs can be improved by coupling Env proteins to costimulatory molecules such as a proliferation inducing ligand (APRIL). In this study, we evaluated the immunogenicity of chimeric molecules containing uncleaved Env gp140 fused to the species-matched cytokines IL-21 or GM-CSF in rabbits and mice. Each cytokine was either fused to the C terminus of Env or embedded within Env at the position of the variable loops 1 and 2. The cytokine components of the chimeric Env-GM-CSF and Env-IL-21 molecules were functional in vitro, but none of the Env-cytokine fusion proteins resulted in improved Ab responses in vivo. Both the Env-GM-CSF and the Env-IL-21 molecules induced strong anticytokine Ab responses in both test species. These autoimmune responses were independent of the location of the cytokine in the chimeric Env molecules in that they were induced by cytokines inserted within the variable loops 1 and 2 of Env or fused to its C terminus. The induction of undesired autoimmune responses should be considered when using cytokines as costimulatory molecules in fusion proteins.
    The Journal of Immunology 04/2014; · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vaccines that protect against viral infection usually elicit neutralizing antibodies, but HIV-1 vaccine candidates have failed to induce broad and potent such responses. Broadly active neutralizing antibodies (bNAbs) do, however, slowly emerge in a minority of HIV-1-infected subjects; and passive immunization with bNAbs protects against viral acquisition in animal models of HIV-1 infection. New techniques have made it possible to interrogate human B cells and thereby to isolate highly potent bNAbs to uncharted epitope clusters. Furthermore, recent high-resolution structure determinations of near-native soluble envelope glycoprotein trimers in complex with different bNAbs reveal the molecular basis for neutralization. Such trimer structures may serve as blueprints for vaccine design. Here we discuss how a vaccine might bridge a reactivity gap from germline antibody to bNAb and simulate the intricate stimuli of affinity maturation that sometimes prevail in chronic infection.
    Expert Review of Vaccines 03/2014; · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.
    Nature 03/2014; · 38.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Broadly reactive neutralizing activity (brNA) against HIV-1 is observed in 10-30% of infected individuals and generally takes 2-4 years to develop. Here we show that two elite neutralizers, infected through injecting drug use, developed brNA around the first year post-SC, whereas criteria for elite brNA were fulfilled around 30 months post-SC. These results indicate that brNA does not necessarily require multiple years to develop and they should encourage the search for vaccines eliciting protective humoral immunity.
    AIDS (London, England) 02/2014; · 4.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously identified a potent small-molecule human immunodeficiency virus type 1 (HIV-1) fusion inhibitor, termed ADS-J1, and hypothesized that it mainly targeted the hydrophobic pocket in the gp41 N-terminal heptad repeat (NHR) trimer. However, this hypothesis has been challenged by the fact that ADS-J1 cannot induce drug-resistance mutation in the gp41 pocket region. Therefore, we show herein that HIV-1 mutants resistant to T2635, a peptide derived from the gp41 C-terminal heptad repeat (CHR) region with pocket-binding domain (PBD), were also resistant to ADS-J1. We also show that pseudoviruses with mutations at positions 64 and 67 in the gp41 pocket region were highly resistant to ADS-J1 and C34, another CHR-peptide with PBD, but relatively sensitive to T20, a CHR-peptide without PBD. ADS-J1 could effectively bind to N36Fd, a mimic of the gp41 NHR-trimer with pocket exposed, and block binding of C34 to N36Fd trimer to form six-helix bundle (6-HB). However, ADS-J1 was less effective in binding to N36Fd trimer with mutations in the gp41 pocket region, such as N36(Q64A)Fd, N36(Q64L)Fd, N36(A67G)Fd, N36(A67S)Fd, and N36(Q66R)Fd, as well as less effective in blocking 6-HB formation between C34 and these mutant N36Fd trimers. These results confirm that ADS-J1 mainly targets the pocket region in the HIV-1 gp41 NHR trimer and suggest that it could be used as a lead for developing small-molecule HIV fusion inhibitors and as a molecule probe for studying the mechanisms of gp41-mediated membrane fusion.
    Biochimica et Biophysica Acta 01/2014; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The HIV-1 envelope glycoprotein (Env) trimer contains the receptor binding sites and membrane fusion machinery that introduce the viral genome into the host cell. As the only target for broadly neutralizing antibodies (bnAbs), Env is a focus for rational vaccine design. We present a cryo-electron microscopy reconstruction and structural model of a cleaved, soluble SOSIP gp140 trimer in complex with a CD4 binding site (CD4bs) bnAb, PGV04, at 5.8 Å resolution. The structure reveals the spatial arrangement of Env components, including the V1/V2, V3, HR1 and HR2 domains, and shielding glycans. The structure also provides insights into trimer assembly, gp120-gp41 interactions, and the CD4bs epitope cluster for bnAbs, which covers a more extensive area and defines a more complex site of vulnerability than previously described.
    Science 10/2013; · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV-1 entry into CD4+ target cells is mediated by cleaved envelope glycoprotein (Env) trimers that have been challenging to characterize structurally. Here, we describe the crystal structure at 4.7 Å of an antigenically near-native, cleaved, stabilized, soluble Env trimer (termed BG505 SOSIP.664 gp140) in complex with a potent broadly neutralizing antibody, PGT122. The structure shows a pre-fusion state of gp41, the interaction between the component gp120 and gp41 subunits, and how a close association between the gp120 V1/V2/V3 loops stabilizes the trimer apex around the three-fold axis. The complete epitope of PGT122 on the trimer involves gp120 V1, V3 and several surrounding glycans. This trimer structure advances our understanding of how Env functions and is presented to the immune system, and provides a blueprint for structure-based vaccine design.
    Science 10/2013; · 31.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We compare the antigenicity and conformation of soluble, cleaved vs. uncleaved envelope glycoprotein (Env gp)140 trimers from the subtype A HIV type 1 (HIV-1) strain BG505. The impact of gp120-gp41 cleavage on trimer structure, in the presence or absence of trimer-stabilizing modifications (i.e., a gp120-gp41 disulfide bond and an I559P gp41 change, together designated SOSIP), was assessed. Without SOSIP changes, cleaved trimers disintegrate into their gp120 and gp41-ectodomain (gp41ECTO) components; when only the disulfide bond is present, they dissociate into gp140 monomers. Uncleaved gp140s remain trimeric whether SOSIP substitutions are present or not. However, negative-stain electron microscopy reveals that only cleaved trimers form homogeneous structures resembling native Env spikes on virus particles. In contrast, uncleaved trimers are highly heterogeneous, adopting a variety of irregular shapes, many of which appear to be gp120 subunits dangling from a central core that is presumably a trimeric form of gp41ECTO. Antigenicity studies with neutralizing and nonneutralizing antibodies are consistent with the EM images; cleaved, SOSIP-stabilized trimers express quaternary structure-dependent epitopes, whereas uncleaved trimers expose nonneutralizing gp120 and gp41ECTO epitopes that are occluded on cleaved trimers. These findings have adverse implications for using soluble, uncleaved trimers for structural studies, and the rationale for testing uncleaved trimers as vaccine candidates also needs to be reevaluated.
    Proceedings of the National Academy of Sciences 10/2013; · 9.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current HIV-1 envelope glycoprotein (Env) vaccines are unable to induce cross-reactive neutralizing antibodies. However, such antibodies are elicited in 10-30% of HIV-1 infected individuals, but it is unknown why these antibodies are induced in some individuals and not in others. We hypothesized that the Envs of early HIV-1 variants in individuals who develop cross-reactive neutralizing activity (CrNA) might have unique characteristics that support the induction of CrNA. We retrospectively generated and analyzed env sequences of early HIV-1 clonal variants from 31 individuals with diverse levels of CrNA 2--4 years post-seroconversion. These sequences revealed a number of Env signatures that coincided with CrNA development. These included a statistically shorter variable region 1 and a lower probability of glycosylation as implied by a high ratio of NXS versus NXT glycosylation motifs. Furthermore, lower probability of glycosylation at position 332, which is involved in the epitopes of many broadly reactive neutralizing antibodies, was associated with the induction of CrNA. Finally, Sequence Harmony identified a number of amino acid changes associated with the development of CrNA. These residues mapped to various Env subdomains, but in particular to the first and fourth variable region as well as the underlying alpha2 helix of the third constant region. These findings imply that the development of CrNA might depend on specific characteristics of early Env. Env signatures that correlate with the induction of CrNA might be relevant for the design of effective HIV-1 vaccines.
    Retrovirology 09/2013; 10(1):102. · 5.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A desirable but as yet unachieved property of a human immunodeficiency virus type 1 (HIV-1) vaccine candidate is the ability to induce broadly neutralizing antibodies (bNAbs). One approach to the problem is to create trimeric mimics of the native envelope glycoprotein (Env) spike that expose as many bNAb epitopes as possible, while occluding those for non-neutralizing antibodies (non-NAbs). Here, we describe the design and properties of soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A transmitted/founder strain, BG505. These trimers are highly stable, more so even than the corresponding gp120 monomer, as judged by differential scanning calorimetry. They are also homogenous and closely resemble native virus spikes when visualized by negative stain electron microscopy (EM). We used several techniques, including ELISA and surface plasmon resonance (SPR), to determine the relationship between the ability of monoclonal antibodies (MAbs) to bind the soluble trimers and neutralize the corresponding virus. In general, the concordance was excellent, in that virtually all bNAbs against multiple neutralizing epitopes on HIV-1 Env were highly reactive with the BG505 SOSIP.664 gp140 trimers, including quaternary epitopes (CH01, PG9, PG16 and PGT145). Conversely, non-NAbs to the CD4-binding site, CD4-induced epitopes or gp41ECTO did not react with the trimers, even when their epitopes were present on simpler forms of Env (e.g. gp120 monomers or dissociated gp41 subunits). Three non-neutralizing MAbs to V3 epitopes did, however, react strongly with the trimers but only by ELISA, and not at all by SPR and to only a limited extent by EM. These new soluble trimers are useful for structural studies and are being assessed for their performance as immunogens.
    PLoS Pathogens 09/2013; 9(9):e1003618. · 8.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human immunodeficiency virus-1 (HIV-1) infection is a significant global public health problem for which development of an effective prophylactic vaccine remains a high scientific priority. Many concepts for a vaccine are focused on induction of appropriate titers of broadly neutralizing antibodies (bnAbs) against the viral envelope (Env) glycoproteins gp120 and gp41, but no immunogen has yet accomplished this goal in animals or humans. One approach to inducing bnAbs is to design soluble, trimeric mimics of the native viral Env trimer. Here, we describe structural studies by negative stain electron microscopy of several variants of soluble Env trimers, based on the KNH1144 subtype A sequence. These Env trimers are fully cleaved between the gp120 and gp41 components and stabilized by specific amino-acid substitutions. We also illustrate the structural consequences of deleting the V1/V2 and V3 variable loops from gp120 and the membrane proximal external region (MPER) from gp41. All of these variants adopt a trimeric configuration that appropriately mimics native Env spikes, including the CD4 receptor-binding site and the epitope for the VRC PG04 bnAb. These cleaved, soluble trimer designs can be adapted for use with multiple different env genes for both vaccine and structural studies.
    Journal of Virology 07/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe methods to improve the properties of soluble, cleaved gp140 trimers of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) for use in structural studies and as immunogens. In the absence of nonionic detergents, gp140 of the KNH1144 genotype, terminating at residue 681 in gp41 (SOSIP.681), has a tendency to form higher-order complexes or aggregates, which is particularly undesirable for structure-based research. We found that this aggregation in the absence of detergent does not involve the V1, V2 or V3 variable regions of gp120. Moreover, we observed that detergent forms micelles around the membrane-proximal external region (MPER) of the SOSIP.681 gp140 trimers, whereas deleting most of the MPER residues by terminating the gp140 at residue 664 (SOSIP.664) prevented the aggregation that otherwise occurs in SOSIP.681 in the absence of detergent. Although the MPER can contribute to trimer formation, truncating most of it only modestly reduced trimerization and lacked global adverse effects on antigenicity. Thus, the MPER deletion minimally influenced the kinetics of the binding of soluble CD4 and a CD4-binding-site antibody to immobilized trimers, as detected by surface plasmon resonance. Furthermore, the MPER deletion did not alter the overall three-dimensional structure of the trimers, as viewed by negative stain electron microscopy. Homogeneous and aggregate-free MPER-truncated SOSIP Env trimers are therefore useful for immunogenicity and structural studies.
    Journal of Virology 07/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A substantial proportion of the broadly neutralizing antibodies (bnAbs) identified in certain HIV-infected donors recognize glycan-dependent epitopes on HIV-1 gp120. Here we elucidate how the bnAb PGT 135 binds its Asn332 glycan-dependent epitope from its 3.1-Å crystal structure with gp120, CD4 and Fab 17b. PGT 135 interacts with glycans at Asn332, Asn392 and Asn386, using long CDR loops H1 and H3 to penetrate the glycan shield and access the gp120 protein surface. EM reveals that PGT 135 can accommodate the conformational and chemical diversity of gp120 glycans by altering its angle of engagement. Combined structural studies of PGT 135, PGT 128 and 2G12 show that this Asn332-dependent antigenic region is highly accessible and much more extensive than initially appreciated, which allows for multiple binding modes and varied angles of approach; thereby it represents a supersite of vulnerability for antibody neutralization.
    Nature Structural & Molecular Biology 05/2013; · 11.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD14 + dermal DCs (CD14 + DDCs) have a natural capacity to activate nave B-cells. Targeting CD14 + DDCs is therefore a rational approach for vaccination strategies aimed at improving humoral responses towards poorly immunogenic antigens, for example, HIV-1 envelope glycoproteins (Env). Here, we show that two clinically relevant TLR ligand combinations, Hiltonol plus Resiquimod and Glucopyranosyl lipid A plus Resiquimod, potently activate CD14 + DDCs, as shown by enhanced expression of multiple cytokines (IL-6, IL-10, IL-12p40 and TNF-a). Furthermore, the responses of CD14 + DDCs to these TLR ligands were not compromised by the presence of HIV-1 gp120, which can drive immunosuppressive effects in vitro and in vivo. The above TLR ligand pairs were better than the individual agents at boosting the inherent capacity of CD14 + DDCs to induce nave B-cells to proliferate and differentiate into CD27 + CD38 + B-cells that secrete high levels of immunoglobulins. CD14 + DDCs stimulated by these TLR ligand combinations also promoted the differentiation of Th1 (IFN-c-secreting), but not Th17, CD4 + T-cells. These observations may help to identify adjuvant strategies aimed at inducing better antibody responses to vaccine antigens, including, but not limited to HIV-1 Env.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New broad and potent neutralizing HIV-1 antibodies have recently been described that are largely dependent on the gp120 N332 glycan for Env recognition. Members of the PGT121 family of antibodies, isolated from an African donor, neutralize ∼70% of circulating isolates with a median IC50 less than 0.05 µg ml(-1). Here, we show that three family members, PGT121, PGT122 and PGT123, have very similar crystal structures. A long 24-residue HCDR3 divides the antibody binding site into two functional surfaces, consisting of an open face, formed by the heavy chain CDRs, and an elongated face, formed by LCDR1, LCDR3 and the tip of the HCDR3. Alanine scanning mutagenesis of the antibody paratope reveals a crucial role in neutralization for residues on the elongated face, whereas the open face, which accommodates a complex biantennary glycan in the PGT121 structure, appears to play a more secondary role. Negative-stain EM reconstructions of an engineered recombinant Env gp140 trimer (SOSIP.664) reveal that PGT122 interacts with the gp120 outer domain at a more vertical angle with respect to the top surface of the spike than the previously characterized antibody PGT128, which is also dependent on the N332 glycan. We then used ITC and FACS to demonstrate that the PGT121 antibodies inhibit CD4 binding to gp120 despite the epitope being distal from the CD4 binding site. Together, these structural, functional and biophysical results suggest that the PGT121 antibodies may interfere with Env receptor engagement by an allosteric mechanism in which key structural elements, such as the V3 base, the N332 oligomannose glycan and surrounding glycans, including a putative V1/V2 complex biantennary glycan, are conformationally constrained.
    PLoS Pathogens 05/2013; 9(5):e1003342. · 8.14 Impact Factor

Publication Stats

3k Citations
637.18 Total Impact Points

Institutions

  • 2009–2014
    • Academisch Medisch Centrum Universiteit van Amsterdam
      • • Department of Medical Microbiology
      • • Academic Medical Center
      Amsterdamo, North Holland, Netherlands
  • 2008–2014
    • Weill Cornell Medical College
      • • Department of Microbiology and Immunology
      • • Department of Biochemistry
      New York City, New York, United States
  • 1999–2014
    • University of Amsterdam
      • • Department of Medical Microbiology
      • • Faculty of Medicine AMC
      Amsterdamo, North Holland, Netherlands
  • 2011–2013
    • The Scripps Research Institute
      • • Department of Integrative Structural and Computational Biology
      • • Department of Cell and Molecular Biology
      La Jolla, CA, United States
    • Duke University Medical Center
      • Department of Surgery
      Durham, North Carolina, United States
    • The Rockefeller University
      • Laboratory of Biochemistry and Molecular Biology
      New York City, New York, United States
  • 2002–2012
    • Cornell University
      • Department of Microbiology and Immunology
      Ithaca, NY, United States
  • 2010
    • Torrey Pines Institute for Molecular Studies
      Port St. Lucie, Florida, United States
  • 2006
    • Academisch Centrum Tandheelkunde Amsterdam
      • Field of Oral Biochemistry
      Amsterdamo, North Holland, Netherlands
  • 2001
    • Universiteit Utrecht
      • Division of Virology
      Utrecht, Utrecht, Netherlands