Steven H Spoel

The University of Edinburgh, Edinburgh, Scotland, United Kingdom

Are you Steven H Spoel?

Claim your profile

Publications (35)294.9 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In eukaryotes, bursts of reactive oxygen and nitrogen species mediate cellular responses to the environment by modifying cysteines of signaling proteins. Cysteine reactivity toward nitric oxide (NO) leads to formation of S-nitrosothiols (SNOs) that play important roles in pathogenesis and immunity. However, it remains poorly understood how SNOs are employed as specific, reversible signaling cues. Here we show that in plant immunity the oxidoreductase Thioredoxin-h5 (TRXh5) reverses SNO modifications by acting as a selective protein-SNO reductase. While TRXh5 failed to restore immunity in gsnor1 mutants that display excessive accumulation of the NO donor S-nitrosoglutathione, it rescued immunity in nox1 mutants that exhibit elevated levels of free NO. Rescue by TRXh5 was conferred through selective denitrosylation of excessive protein-SNO, which reinstated signaling by the immune hormone salicylic acid. Our data indicate that TRXh5 discriminates between protein-SNO substrates to provide previously unrecognized specificity and reversibility to protein-SNO signaling in plant immunity.
    Molecular cell. 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: I. II. III. IV. V. VI. VII. VIII. IX. X. XI. XII. XIII. XIV. References SUMMARY: Nitric oxide (NO), a gaseous, redox-active small molecule, is gradually becoming established as a central regulator of growth, development, immunity and environmental interactions in plants. A major route for the transfer of NO bioactivity is S-nitrosylation, the covalent attachment of an NO moiety to a protein cysteine thiol to form an S-nitrosothiol (SNO). This chemical transformation is rapidly emerging as a prototypic, redox-based post-translational modification integral to the life of plants. Here we review the myriad roles of NO and SNOs in plant biology and, where known, the molecular mechanisms underpining their activity.
    New Phytologist 03/2014; · 6.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary source of nitrogen in soil, is linked to the generation of the redox signal nitric oxide (NO). An important mechanism by which NO regulates plant development and stress responses is through S-nitrosylation, that is, covalent attachment of NO to cysteine residues to form S-nitrosothiols (SNO). Despite the importance of nitrogen assimilation and NO signalling, it remains largely unknown how these pathways are interconnected. Here we show that SNO signalling suppresses both nitrate uptake and reduction by transporters and reductases, respectively, to fine tune nitrate homeostasis. Moreover, NO derived from nitrate assimilation suppresses the redox enzyme S-nitrosoglutathione Reductase 1 (GSNOR1) by S-nitrosylation, preventing scavenging of S-nitrosoglutathione, a major cellular bio-reservoir of NO. Hence, our data demonstrates that (S)NO controls its own generation and scavenging by modulating nitrate assimilation and GSNOR1 activity.
    Nature Communications 01/2014; 5:5401. · 10.74 Impact Factor
  • Source
    Steven Spoel, Gerben van Ooijen
    [Show abstract] [Hide abstract]
    ABSTRACT: Significance Plant crops are critically important to provide quality food and bio-energy to sustain a growing human population. Circadian clocks have been shown to deliver an adaptive advantage to plants, vastly increasing biomass production by efficient anticipation to the solar cycle. Plant stress on the other hand, whether biotic or abiotic, prevents crops from reaching maximum productivity. Recent Advances Stress is associated with fluctuations in cellular redox and increased phytohormone signalling. Recently, direct links between circadian timekeeping, redox fluctuations, and hormone signalling have been identified. A direct implication is that circadian control of cellular redox homeostasis influences how plants negate stress to ensure growth and reproduction. Critical Issues Complex cellular biochemistry leads from perception of stress via hormone signals and formation of reactive oxygen intermediates to a physiological response. Circadian clocks and metabolic pathways intertwine to form a confusing biochemical labyrinth. Here we aim to find order in this complex matter by reviewing current advances in our understanding of the interface between these networks. Future Directions Although the link is now clearly defined, at present a key question remains to what extent the circadian clock modulates redox, and vice versa. Furthermore, the mechanistic basis by which the circadian clock gates redox- and hormone-mediated stress responses remains largely elusive.
    Antioxidants & Redox Signaling 08/2013; · 8.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In dense stands of plants, such as agricultural monocultures, plants are simultaneously exposed to competition for light and other stresses like pathogen infection. Here, we show that both salicylic acid (SA)-dependent and jasmonic acid (JA)-dependent disease resistance is inhibited by a simultaneously reduced red:far-red light ratio (R:FR), the early warning signal for plant competition. Conversely, SA- and JA-dependent induced defences did not affect shade avoidance responses to low R:FR. Reduced pathogen resistance by low R:FR was accompanied by a strong reduction in the regulation of JA- and SA-responsive genes. The severe inhibition of SA-responsive transcription in low R:FR appeared to be brought about by the repression of SA-inducible kinases. Phosphorylation of the SA-responsive transcription co-activator NPR1, which is required for full induction of SA-responsive transcription, was indeed reduced and may thus play a role in the suppression of SA-mediated defences by low R:FR-mediated phytochrome inactivation. Our results indicate that foraging for light through the shade avoidance response is prioritised over plant immune responses when plants are simultaneously challenged with competition and pathogen attack. This article is protected by copyright. All rights reserved.
    The Plant Journal 05/2013; 75(1):90-103. · 6.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salicylic acid (SA) is a plant immune signal produced after pathogen challenge to induce systemic acquired resistance. It is the only major plant hormone for which the receptor has not been firmly identified. Systemic acquired resistance in Arabidopsis requires the transcription cofactor nonexpresser of PR genes 1 (NPR1), the degradation of which acts as a molecular switch. Here we show that the NPR1 paralogues NPR3 and NPR4 are SA receptors that bind SA with different affinities. NPR3 and NPR4 function as adaptors of the Cullin 3 ubiquitin E3 ligase to mediate NPR1 degradation in an SA-regulated manner. Accordingly, the Arabidopsis npr3 npr4 double mutant accumulates higher levels of NPR1, and is insensitive to induction of systemic acquired resistance. Moreover, this mutant is defective in pathogen effector-triggered programmed cell death and immunity. Our study reveals the mechanism of SA perception in determining cell death and survival in response to pathogen challenge.
    Nature 06/2012; 486(7402):228-32. · 38.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: S-nitrosylation, the covalent attachment of a nitric oxide (NO) moiety to a protein cysteine thiol to form an S-nitrosothiol (SNO) is rapidly emerging as a prototypic, redox-based post-translational modification during plant immune function. Here we review recently identified targets for S-nitrosylation and the consequences of these modifications in relation to the control of plant disease resistance.
    Current opinion in plant biology 03/2012; 15(4):424-30. · 10.33 Impact Factor
  • Source
    Steven H Spoel, Xinnian Dong
    [Show abstract] [Hide abstract]
    ABSTRACT: Vertebrates have evolved a sophisticated adaptive immune system that relies on an almost infinite diversity of antigen receptors that are clonally expressed by specialized immune cells that roam the circulatory system. These immune cells provide vertebrates with extraordinary antigen-specific immune capacity and memory, while minimizing self-reactivity. Plants, however, lack specialized mobile immune cells. Instead, every plant cell is thought to be capable of launching an effective immune response. So how do plants achieve specific, self-tolerant immunity and establish immune memory? Recent developments point towards a multilayered plant innate immune system comprised of self-surveillance, systemic signalling and chromosomal changes that together establish effective immunity.
    Nature Reviews Immunology 02/2012; 12(2):89-100. · 32.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A key feature of the plant defence response is the transient engagement of a nitrosative burst, resulting in the synthesis of reactive nitrogen intermediates (RNIs). Specific, highly reactive cysteine (Cys) residues of low pK(a) are a major site of action for these intermediates. The addition of an NO moiety to a Cys thiol to form an S-nitrosothiol (SNO), is termed S-nitrosylation. This redox-based post-translational modification is emerging as a key regulator of protein function in plant immunity. Here we highlight recent advances in our understanding of de-nitrosylation, the mechanism that depletes protein SNOs, with a focus on S-nitrosoglutathione reductase (GSNOR). This enzyme controls total cellular S-nitrosylation indirectly during the defence response by turning over S-nitrosoglutathione (GSNO), a major cache of NO bioactivity.
    Plant Science 11/2011; 181(5):540-4. · 4.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Changes in redox status are a conspicuous feature of immune responses in a variety of eukaryotes, but the associated signalling mechanisms are not well understood. In plants, attempted microbial infection triggers the rapid synthesis of nitric oxide and a parallel accumulation of reactive oxygen intermediates, the latter generated by NADPH oxidases related to those responsible for the pathogen-activated respiratory burst in phagocytes. Both nitric oxide and reactive oxygen intermediates have been implicated in controlling the hypersensitive response, a programmed execution of plant cells at sites of attempted infection. However, the molecular mechanisms that underpin their function and coordinate their synthesis are unknown. Here we show genetic evidence that increases in cysteine thiols modified using nitric oxide, termed S-nitrosothiols, facilitate the hypersensitive response in the absence of the cell death agonist salicylic acid and the synthesis of reactive oxygen intermediates. Surprisingly, when concentrations of S-nitrosothiols were high, nitric oxide function also governed a negative feedback loop limiting the hypersensitive response, mediated by S-nitrosylation of the NADPH oxidase, AtRBOHD, at Cys 890, abolishing its ability to synthesize reactive oxygen intermediates. Accordingly, mutation of Cys 890 compromised S-nitrosothiol-mediated control of AtRBOHD activity, perturbing the magnitude of cell death development. This cysteine is evolutionarily conserved and specifically S-nitrosylated in both human and fly NADPH oxidase, suggesting that this mechanism may govern immune responses in both plants and animals.
    Nature 10/2011; 478(7368):264-8. · 38.60 Impact Factor
  • Source
    John W Moore, Gary J Loake, Steven H Spoel
    [Show abstract] [Hide abstract]
    ABSTRACT: Plant cells maintain sophisticated gene transcription programs to regulate their development, communication, and response to the environment. Environmental stress cues, such as pathogen encounter, lead to dramatic reprogramming of transcription to favor stress responses over normal cellular functions. Transcription reprogramming is conferred by the concerted action of myriad transcription (co)factors that function directly or indirectly to recruit or release RNA Polymerase II. To establish an effective defense response, cells require transcription (co)factors to deploy their activity rapidly, transiently, spatially, and hierarchically. Recent findings suggest that in plant immunity these requirements are met by posttranslational modifications that accurately regulate transcription (co)factor activity as well as by sequential pulse activation of specific gene transcription programs that provide feedback and feedforward properties to the defense gene network. Here, we integrate these recent findings from plant defense studies into the emerging field of transcription dynamics in eukaryotes.
    The Plant Cell 08/2011; 23(8):2809-20. · 9.25 Impact Factor
  • Byung-Wook Yun, Steven H Spoel, Gary J Loake
    [Show abstract] [Hide abstract]
    ABSTRACT: Reactive oxygen and nitrogen intermediates (ROIs and RNIs), respectively, are central features of the plant immune response. Rare, highly reactive protein cysteine (Cys) residues of low pKa are a major target for these intermediates. In this context, S-nitrosylation, the addition of a nitric oxide (NO) moiety to a Cys thiol to form an S-nitrosothiol (SNO), is emerging as a key, redox-based post-translational modification during plant immune function. Here, we describe some recent insights into how ROIs and RNIs are synthesized and how these small, redox active molecules help orchestrate the plant defence response. The reviewed data highlights the growing importance of ROIs and RNIs in orchestrating the development of plant immunity and provides insights into the molecular mechanisms underpinning their function. Signalling via small, redox active molecules is a key feature underpinning a diverse series of signal transduction networks in eukaryotic cells. Therefore, insights into the mechanisms that support the activity of these molecules may have potentially wide significance. This article is part of a Special Issue entitled: Regulation of cellular processes by S-nitrosylation.
    Biochimica et Biophysica Acta 06/2011; 1820(6):770-6. · 4.66 Impact Factor
  • Steven H Spoel, Gary J Loake
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of plant immunity is associated with dramatic changes in the cellular redox status. Both oxidative and reductive bursts have been described that trigger a set of down stream responses resulting in reprogramming of the transcriptome and establishment of disease resistance. Nonetheless, how these redox changes are sensed and signal to downstream regulators remained a missing link in studies of plant immunity. Emerging evidence now indicates that pathogen-induced changes in the cellular redox environment are sensed by reactive cysteine residues of key regulatory proteins. Varying degrees of reversible, oxidative cysteine modifications control the activity, localization, protein-interaction and stability of regulatory proteins. These diverse effects on protein function make post-translational redox-based modifications potent modulators of plant immunity.
    Current opinion in plant biology 03/2011; 14(4):358-64. · 10.33 Impact Factor
  • Source
    Steven H Spoel, Yasuomi Tada, Gary J Loake
    [Show abstract] [Hide abstract]
    ABSTRACT: Precise modulation of transcription plays a vital role in both development and the response of all higher organisms to their environment. Temporal activation or repression of specific genes is accomplished via a plethora of transcriptional regulators. However, relatively little is known about how the activities of these proteins are controlled. Recent findings indicate that post-translational modifications fine-tune the function of transcription regulators by affecting their localization, conformation or stability. Here, we discuss these regulatory mechanisms in the context of the plant immune response. This system lends itself particularly well to studies of transcriptional regulators as activation of plant immunity is associated with rapid and dramatic reprogramming of the transcriptome. A case study of the plant immune coactivator NPR1 (nonexpressor of pathogenesis-related (PR) genes 1) illustrates that transcription regulator activity may be controlled by redox-based modifications of cysteine thiols (e.g. disulphide bonding and S-nitrosylation), phosphorylation, and ubiquitinylation coupled to protein degradation. Importantly, cross-talk between distinct protein modifications may determine the spatial and temporal activity of transcription regulators that in turn profile the cellular transcriptome.
    New Phytologist 12/2009; 186(2):333-9. · 6.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reactive oxygen intermediates (ROIs) and reactive nitrogen intermediates (RNIs) have now become well established as important signalling molecules in physiological settings within microorganisms, mammals and plants. These intermediates are routinely synthesised in a highly controlled and transient fashion by NADPH-dependent enzymes, which constitute key regulators of redox signalling. Mild oxidants such as hydrogen peroxide (H(2)O(2)) and especially nitric oxide (NO) signal through chemical reactions with specific atoms of target proteins that result in covalent protein modifications. Specifically, highly reactive cysteine (Cys) residues of low pK(a) are a major site of action for these intermediates. The oxidation of target Cys residues can result in a number of distinct redox-based, post-translational modifications including S-nitrosylation, S-glutathionylation; and sulphenic acid, sulphinic acid and disulphide formation. Importantly, such modifications precisely regulate protein structure and function. Cys-based redox switches are now increasingly being found to underpin many different signalling systems and regulate physiological outputs across kingdoms.
    Physiologia Plantarum 10/2009; 138(4):360-71. · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Systemic acquired resistance (SAR) is a broad-spectrum plant immune response involving profound transcriptional changes that are regulated by the coactivator NPR1. Nuclear translocation of NPR1 is a critical regulatory step, but how the protein is regulated in the nucleus is unknown. Here, we show that turnover of nuclear NPR1 protein plays an important role in modulating transcription of its target genes. In the absence of pathogen challenge, NPR1 is continuously cleared from the nucleus by the proteasome, which restricts its coactivator activity to prevent untimely activation of SAR. Surprisingly, inducers of SAR promote NPR1 phosphorylation at residues Ser11/Ser15, and then facilitate its recruitment to a Cullin3-based ubiquitin ligase. Turnover of phosphorylated NPR1 is required for full induction of target genes and establishment of SAR. These in vivo data demonstrate dual roles for coactivator turnover in both preventing and stimulating gene transcription to regulate plant immunity.
    Cell 06/2009; 137(5):860-72. · 31.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The plant hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play crucial roles in the signaling network that regulates induced defense responses against biotic stresses. Antagonism between SA and JA operates as a mechanism to fine-tune defenses that are activated in response to multiple attackers. In Arabidopsis (Arabidopsis thaliana), NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) was demonstrated to be required for SA-mediated suppression of JA-dependent defenses. Because ET is known to enhance SA/NPR1-dependent defense responses, we investigated the role of ET in the SA-JA signal interaction. Pharmacological experiments with gaseous ET and the ET precursor 1-aminocyclopropane-1-carboxylic acid showed that ET potentiated SA/NPR1-dependent PATHOGENESIS-RELATED1 transcription, while it rendered the antagonistic effect of SA on methyl jasmonate-induced PDF1.2 and VSP2 expression NPR1 independent. This overriding effect of ET on NPR1 function in SA-JA cross talk was absent in the npr1-1/ein2-1 double mutant, demonstrating that it is mediated via ET signaling. Abiotic and biotic induction of the ET response similarly abolished the NPR1 dependency of the SA-JA signal interaction. Furthermore, JA-dependent resistance against biotic attackers was antagonized by SA in an NPR1-dependent fashion only when the plant-attacker combination did not result in the production of high levels of endogenous ET. Hence, the interaction between ET and NPR1 plays an important modulating role in the fine tuning of the defense signaling network that is activated upon pathogen and insect attack. Our results suggest a model in which ET modulates the NPR1 dependency of SA-JA antagonism, possibly to compensate for enhanced allocation of NPR1 to function in SA-dependent activation of PR genes.
    Plant physiology 02/2009; 149(4):1797-809. · 6.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The plant hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play crucial roles in the signaling network that regulates induced defense responses against biotic stresses. Antagonism between SA and JA operates as a mechanism to finetune defenses that are activated in response to multiple attackers. In Arabidopsis (Arabidopsis thaliana), NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) was demonstrated to be required for SA-mediated suppression of JA-dependent defenses. Because ET is known to enhance SA/NPR1-dependent defense responses, we investigated the role of ET in the SA-JA signal interaction. Pharmacological experiments with gaseous ET and the ET precursor 1-aminocyclopropane-1-carboxylic acid showed that ET potentiated SA/NPR1-dependent PATHOGENESIS-RELATED1 transcription, while it rendered the antagonistic effect of SA on methyl jasmonate-induced PDF1.2 and VSP2 expression NPR1 independent. This overriding effect of ET on NPR1 function in SA-JA cross talk was absent in the npr1-1/ein2-1 double mutant, demonstrating that it is mediated via ET signaling. Abiotic and biotic induction of the ET response similarly abolished the NPR1 dependency of the SA-JA signal interaction. Furthermore, JA-dependent resistance against biotic attackers was antagonized by SA in an NPR1-dependent fashion only when the plant-attacker combination did not result in the production of high levels of endogenous ET. Hence, the interaction between ET and NPR1 plays an important modulating role in the fine tuning of the defense signaling network that is activated upon pathogen and insect attack. Our results suggest a model in which ET modulates the NPR1 dependency of SA-JA antagonism, possibly to compensate for enhanced allocation of NPR1 to function in SA-dependent activation of PR genes.
    01/2009;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Changes in redox status have been observed during immune responses in different organisms, but the associated signaling mechanisms are poorly understood. In plants, these redox changes regulate the conformation of NPR1, a master regulator of salicylic acid (SA)-mediated defense genes. NPR1 is sequestered in the cytoplasm as an oligomer through intermolecular disulfide bonds. We report that S-nitrosylation of NPR1 by S-nitrosoglutathione (GSNO) at cysteine-156 facilitates its oligomerization, which maintains protein homeostasis upon SA induction. Conversely, the SA-induced NPR1 oligomer-to-monomer reaction is catalyzed by thioredoxins (TRXs). Mutations in both NPR1 cysteine-156 and TRX compromised NPR1-mediated disease resistance. Thus, the regulation of NPR1 is through the opposing action of GSNO and TRX. These findings suggest a link between pathogen-triggered redox changes and gene regulation in plant immunity.
    Science 08/2008; 321(5891):952-6. · 31.20 Impact Factor
  • Source
    Steven H Spoel, Xinnian Dong
    [Show abstract] [Hide abstract]
    ABSTRACT: In response to biotic stress, crosstalk between plant hormonal signaling pathways prioritizes defense over other cellular functions. Some plant pathogens take advantage of this regulatory system by mimicking hormones that interfere with host immune responses to promote virulence. Here we discuss the various roles that crosstalk may play in response to pathogens with different infection strategies.
    Cell host & microbe 07/2008; 3(6):348-51. · 13.02 Impact Factor

Publication Stats

2k Citations
294.90 Total Impact Points

Institutions

  • 2009–2014
    • The University of Edinburgh
      • Institute of Molecular Plant Sciences
      Edinburgh, Scotland, United Kingdom
  • 2006–2012
    • Duke University
      • Department of Biology
      Durham, NC, United States
    • RWTH Aachen University
      Aachen, North Rhine-Westphalia, Germany
  • 2003
    • Utrecht University
      Utrecht, Utrecht, Netherlands