E. Moebius

University of Montana, Missoula, Montana, United States

Are you E. Moebius?

Claim your profile

Publications (458)1107.6 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The Interstellar Boundary Explorer (IBEX) observes enhanced Energetic Neutral Atoms (ENAs) emission in the keV energy range from a narrow (~20° wide) "ribbon" in the sky that appears to be centered on the direction of the local interstellar (LIS) magnetic field. The Milagro collaboration, the Asγ collaboration and the IceCube observatory have recently made global maps of cosmic ray fluxes in the TeV energy range, revealing anisotropic structures ordered in part by the local interstellar magnetic field and the interstellar flow. This paper following from a recent publication in Science makes the link between these disparate observations by developing a simple model of the magnetic structure surrounding the heliosphere in the Local Interstellar Medium (LISM) that is consistent with both IBEX ENA fluxes and TeV cosmic ray anisotropies. The model also employs the revised velocity direction of the LIC derived from neutral He observations by IBEX. By modeling the propagation of cosmic rays through this magnetic field structure, we specifically show that (1) the large-scale TeV anisotropy provides a roughly consistent orientation for the local interstellar magnetic field at the center of the IBEX Ribbon and corroborates the ~ 3 μG magnitude of the local interstellar magnetic field derived from IBEX observations of the global heliosphere; (2) and small-scale structures in cosmic rays (over < 30° angular scales) are influenced by the interstellar field interaction with the heliosphere at energies < 10 TeV. Thus, we provide a link between IBEX ENA observations, IBEX neutral observations of interstellar He, and TeV cosmic ray anisotropies, which are strongly influenced by the interactions between the local interstellar magnetic field, the flow of the local interstellar plasma, and the global heliosphere.
    Journal of Physics Conference Series 08/2014; 531(1):012010.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Interstellar Boundary Explorer (IBEX) returned its first five years of scientific observations from 2009 to 2013. In this study, we examine, validate, initially analyze, and provide to the broad scientific community this complete set of energetic neutral atom (ENA) observations for the first time. IBEX measures the fluxes of ENAs reaching 1 AU from sources in the outer heliosphere and most likely the very nearby interstellar space beyond the heliopause. The data, maps, and documentation provided in this study represent the fourth major release of the IBEX data, incorporate important improvements, and should be used for future studies and as the citable reference for the current version of the IBEX data. In this study, we also examine five years of time evolution in the outer heliosphere and the resulting ENA emissions. These observations show a complicated variation with a general decrease in ENA fluxes from 2009 to 2012 over most regions of the sky, consistent with a 2-4 year recycle time for the previously decreasing solar wind flux. In contrast, the heliotail fluxes continue to decrease, again consistent with a significantly more distant source in the downwind direction. Finally, the Ribbon shows the most complicated time variations, with a leveling off in the southern hemisphere and continued decline in the northern one; these may be consistent with the Ribbon source being significantly farther away in the north than in the south. Together, the observations and results shown in this study expose the intricacies of our heliosphere's interaction with the local interstellar medium.
    The Astrophysical Journal Supplement Series 07/2014; 213(2):20. · 16.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the signals from neutral He atoms observed from Earth orbit in 2010 by IBEX. The full He signal observed during the 2010 observation season can be explained as a superposition of pristine neutral interstellar He gas and an additional population of neutral He that we call the Warm Breeze. The Warm Breeze is approximately two-fold slower and 2.5 times warmer than the primary interstellar He population, and its density in front of the heliosphere is ~7% that of the neutral interstellar helium. The inflow direction of the Warm Breeze differs by ~19deg from the inflow direction of interstellar gas. The Warm Breeze seems a long-term feature of the heliospheric environment. It has not been detected earlier because it is strongly ionized inside the heliosphere, which brings it below the threshold of detection via pickup ion and heliospheric backscatter glow observations, as well as by the direct sampling of GAS/Ulysses. Possible sources for the Warm Breeze include (1) the secondary population of interstellar helium, created via charge exchange and perhaps elastic scattering of neutral interstellar He atoms on interstellar He+ ions in the outer heliosheath, or (2) a gust of interstellar He originating from a hypothetic wave train in the Local Interstellar Cloud. A secondary population is expected from models, but the characteristics of the Warm Breeze do not fully conform to modeling results. If, nevertheless, this is the explanation, IBEX-Lo observations of the Warm Breeze provide key insights into the physical state of plasma in the outer heliosheath. If the second hypothesis is true, the source is likely to be located within a few thousand of AU from the Sun, which is the propagation range of possible gusts of interstellar neutral helium with the Warm Breeze characteristics against dissipation via elastic scattering in the Local Cloud.
    The Astrophysical Journal Supplement Series 05/2014; 213(2). · 16.24 Impact Factor
  • Source
    The Astrophysical Journal Supplement Series 04/2014; 211(2):32. · 16.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ionic charge states of solar energetic particles (SEPs) provide direct information about the source plasma, the acceleration environment, and their transport. Recent studies report that both gradual and impulsive SEP events show mean iron charge states langQ Ferang ~ 10-14 at low energies E <= 0.1 MeV nuc-1, consistent with their origin from typical corona material at temperatures 1-2 MK. Observed increases of langQ Ferang up to 20 at energies 0.1-0.5 MeV nuc-1 in impulsive SEPs are attributed to stripping during acceleration. However, Q Fe > 16 is occasionally found in the solar wind, particularly coming from active regions, in contrast to the exclusively reported langQ Ferang <= 14 for low energy SEPs. Here we report results from a survey of all 89 SEP events observed with Advanced Composition Explorer Solar Energetic Particle Ionic Charge Analyzer (SEPICA) in 1998-2000 for iron charge states augmented at low energy with Solar and Heliospheric Observatory CELIAS suprathermal time-of-flight (STOF). Nine SEP events with langQ Ferang >= 14 throughout the entire SEPICA and STOF energy range have been identified. Four of the nine events are impulsive events identified through velocity dispersion that are consistent with source temperatures >=2 MK up to ~4 MK. The other five events show evidence of interplanetary acceleration. Four of them involve re-acceleration of impulsive material, whose original energy dependent charge states appear re-distributed to varying extent bringing higher charge states to lower energy. One event, which shows flat but elevated langQ Ferang ~ 14.2 over the entire energy range, can be associated with interplanetary acceleration of high temperature material. This event may exemplify a rare situation when a second shock plows through high temperature coronal mass ejection material.
    03/2014; 785(1).
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the heliosheath beyond the termination shock, low energy (<0.5 keV) neutral atoms are created by charge exchange with interstellar neutrals. Detecting these neutrals from Earth's orbit is difficult because their flux is reduced substantially by ionization losses as they propagate from about 100 to 1 AU and because there are a variety of other signals and backgrounds that compete with this weak signal. Observations from IBEX-Lo and -Hi from two opposing vantage points in Earth's orbit established a lower energy limit of about 0.1 keV on measurements of energetic neutral atoms (ENAs) from the heliosphere and the form of the energy spectrum from about 0.1 to 6 keV in two directions in the sky. Below 0.1 keV, the detailed ENA spectrum is not known, and IBEX provides only upper limits on the fluxes. However, using some assumptions and taking constraints on the spectrum into account, we find indications that the spectrum turns over at an energy between 0.1 and 0.2 keV.
    The Astrophysical Journal 03/2014; 784(2):89. · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Observations with the Interstellar Boundary Explorer (IBEX) have shown enhanced energetic neutral atom (ENA) emission from a narrow, circular ribbon likely centered on the direction of the local interstellar medium (LISM) magnetic field. Here, we show that recent determinations of the local interstellar velocity, based on interstellar atom measurements with IBEX, are consistent with the interstellar modulation of high energy (TeV) cosmic rays and diffusive propagation from supernova sources revealed in global anisotropy maps of ground-based high-energy cosmic-ray observatories (Milagro, Asγ and IceCube). Establishing a consistent local interstellar magnetic field direction using IBEX ENAs at hundreds to thousands of eV and galactic cosmic rays at tens of TeV has wide-ranging implications for the structure of our heliosphere and its interactions with the local interstellar medium, particularly important at the time when the Voyager spacecraft are leaving our heliosphere.
    Science 02/2014; · 31.20 Impact Factor
  • 01/2014; 16(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: A linear time-of-flight mass spectrometer is developed for the detection and chemical analysis of nanometer-sized particles originating near the Sun. Nano-dust particles are thought to be produced by mutual collisions between interplanetary dust particles slowly spiraling toward the Sun and are accelerated outward to high velocities by interaction with the solar wind plasma. The WAVES instruments on the two STEREO spacecraft reported the detection, strong temporal variation, and potentially high flux of these particles. Here we report on the optimization and the results from the detailed characterization of the instrument's performance using submicrometer sized dust particles accelerated to 8–60 km/s. The Nano Dust Analyzer (NDA) concept is derived from previously developed detectors. It has a 200 cm2 effective target area and a mass resolution of approximately m/Δm = 50. The NDA instrument is designed to reliably detect and analyze nanometer-sized dust particles while being pointed close to the Sun's direction, from where they are expected to arrive. Measurements by such an instrument will determine the size-dependent flux of the nano-dust particles and its variations, it will characterize the composition of the nano-dust and, ultimately, it may determine their source. The flight version of the NDA instrument is estimated to be <5 kg and requires <10 W for operation.
    Review of Scientific Instruments 01/2014; 85(3):035113-035113-12. · 1.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extreme UV (EUV) spectra from the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED)/Solar EUV Experiment are used to infer photoionization rates in the inner heliosphere. Relating these rates to various proxies describing the solar EUV radiation, we construct a multi-linear model which allows us to extrapolate ionization rates back to periods when no routine measurements of the solar EUV spectral distribution have been available. Such information is important, e.g., for comparing conditions of the interstellar neutral particles in the inner heliosphere at the time of Ulysses/GAS observations with conditions during the more recent observations of the Interstellar Boundary Explorer. From a period of 11 yr when detailed spectra from both TIMED and three proxies—Solar and Heliospheric Observatory/CELIAS/SEM-rates, F10.7 radio flux, and Mg II core-to-wing indices—have been available, we conclude that the simple model is able to reproduce the photoionization rates with an uncertainty of typically 5%.
    The Astrophysical Journal Supplement Series 01/2014; 210(1):12-. · 16.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neutral hydrogen atoms that travel into the heliosphere from the local interstellar medium (LISM) experience strong effects due to charge exchange and radiation pressure from resonant absorption and re-emission of Lyα. The radiation pressure roughly compensates for the solar gravity. As a result, interstellar hydrogen atoms move along trajectories that are quite different than those of heavier interstellar species such as helium and oxygen, which experience relatively weak radiation pressure. Charge exchange leads to the loss of primary neutrals from the LISM and the addition of new secondary neutrals from the heliosheath. IBEX observations show clear effects of radiation pressure in a large longitudinal shift in the peak of interstellar hydrogen compared with that of interstellar helium. Here, we compare results from the Lee et al. interstellar neutral model with IBEX-Lo hydrogen observations to describe the distribution of hydrogen near 1 AU and provide new estimates of the solar radiation pressure. We find over the period analyzed from 2009 to 2011 that radiation pressure divided by the gravitational force (μ) has increased slightly from μ = 0.94 ± 0.04 in 2009 to μ = 1.01 ± 0.05 in 2011. We have also derived the speed, temperature, source longitude, and latitude of the neutral H atoms and find that these parameters are roughly consistent with those of interstellar He, particularly when considering the filtration effects that act on H in the outer heliosheath. Thus, our analysis shows that over the period from 2009 to 2011, we observe signatures of neutral H consistent with the primary distribution of atoms from the LISM and a radiation pressure that increases in the early rise of solar activity.
    The Astrophysical Journal 09/2013; 775(2):86. · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The journey of the Sun through the dynamically active local interstellar medium creates an evolving heliosphere environment. This motion drives a wind of interstellar material through the heliosphere that has been measured with Earth-orbiting and interplanetary spacecraft for 40 years. Recent results obtained by NASA's Interstellar Boundary Explorer mission during 2009-2010 suggest that neutral interstellar atoms flow into the solar system from a different direction than found previously. These prior measurements represent data collected from Ulysses and other spacecraft during 1992-2002 and a variety of older measurements acquired during 1972-1978. Consideration of all data types and their published results and uncertainties, over the three epochs of observations, indicates that the trend for the interstellar flow ecliptic longitude to increase linearly with time is statistically significant.
    Science 09/2013; 341(6150):1080-2. · 31.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The solar wind continuously flows out from the Sun, filling interplanetary space and directly interacting with the surfaces of small planetary bodies and other objects throughout the solar system. A significant fraction of these ions backscatter from the surface as energetic neutral atoms (ENAs). The first observations of these ENA emissions from the Moon were recently reported from the Interstellar Boundary Explorer (IBEX). These observations yielded a lunar ENA albedo of ˜10% and showed that the Moon reflects ˜150 metric tons of neutral hydrogen per year. More recently, a survey of the first 2.5 years of IBEX observations of lunar ENAs was conducted for times when the Moon was in the solar wind. Here, we present the first IBEX ENA observations when the Moon is inside the terrestrial magnetosheath and compare them with observations when the Moon is in the solar wind. Our analysis shows that: (1) the ENA intensities are on average higher when the Moon is in the magnetosheath, (2) the energy spectra are similar above ~0.6* solar wind energy but below there are large differences of the order of a factor of 10, (3) the energy spectra resemble a power law with a "hump" at ˜0.6 * solar wind energy, and (4) this "hump" is broader when the Moon is in the magnetosheath. We explore potential scenarios to explain the differences, namely the effects of the topography of the lunar surface and the consequences of a very different Mach number in the solar wind versus in the magnetosheath.
    Planetary and Space Science 09/2013; · 2.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the first in situ measurements of neutral deuterium originating in the local interstellar medium (LISM) in Earth's orbit. These measurements were performed with the IBEX-Lo camera on NASA's interstellar boundary explorer (IBEX) satellite. All data from the spring observation periods of 2009 through 2011 have been analysed. In the three years of the IBEX mission time, the observation geometry and orbit allowed for a total observation time of 115.3 days for the LISM. However, the effects of the spinning spacecraft and the stepping through 8 energy channels mean that we are only observing the interstellar wind for a total time of 1.44 days, in which 2 counts for interstellar deuterium were collected. We report here a conservative number, because a possibility of systematic error or additional noise, though eliminated in our analysis to the best of our knowledge, only supports detection at a 1-sigma level. From these observations, we derive a ratio D/H = (5.8 ± 4.4) × 10-4 at 1 AU. After modelling the transport and loss of D and H from the termination shock to Earth's orbit, we find that our result of D/HLISM = (1.6 ± 1.2) × 10-5 agrees with D/HLIC = (1.6 ± 0.4) × 10-5 for the local interstellar cloud. This weak interstellar signal is extracted from a strong terrestrial background signal consisting of sputter products from the sensor's conversion surface. As reference, we accurately measure the terrestrial D/H ratio in these sputtered products and then discriminate this terrestrial background source. Because of the diminishing D and H signal at Earth's orbit during the rising solar activity due to photoionisation losses and increased photon pressure, our result demonstrates that in situ measurements of interstellar deuterium in the inner heliosphere are only possible during solar minimum conditions.
    Astronomy and Astrophysics 09/2013; · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: velocity distribution of interstellar pickup ions (PUIs) has typically been described as evolving through fast pitch angle scattering followed by adiabatic cooling while being transported radially outward with the solar wind. In combination, the ionization rate, which controls the radial profile of the interstellar neutrals, and the cooling process determine the slope of the observed PUI distributions. Thus far, a cooling index of 3/2 for the PUI velocity distributions has been used in almost all studies. This value is based on the implicit assumptions of immediate PUI isotropization due to pitch angle scattering and solar wind expansion with the square of the distance from the Sun. Here we determine the observed cooling index in a comparison of He+ PUI distributions taken for 1 month in the upwind direction with ACE SWICS from 1999 through 2010 over the past solar cycle with such an isotropic PUI model, treating the cooling index as a free parameter. The ionization rate is obtained simultaneously from independent observations. To separate effects of slow pitch angle scattering of PUIs, the comparison is repeated for times restricted to perpendicular interplanetary magnetic field (IMF). When averaged over the entire data set, the cooling index is very close to 3/2. However, it varies substantially from 1.1 to 1.9 between samples, shows a distinct variation with solar activity, and has a significant correlation with sunspot number when data are restricted to nearly perpendicular IMF (θBvSW>60°) excluding the slow pitch angle scattering in the radial IMF direction. The potential influence of slow pitch angle scattering, solar wind structures, and electron ionization on the cooling index and its variations is discussed.
    Journal of Geophysical Research 07/2013; 118(7):3946-3953. · 3.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The abundance of deuterium in the interstellar gas in front of the Sun gives insight into the processes of filtration of neutral interstellar species through the heliospheric interface and potentially into the chemical evolution of the Galactic gas. We investigate the possibility of detection of neutral interstellar deuterium at 1 AU from the Sun by direct sampling by the Interstellar Boundary Explorer (IBEX). We simulate the flux of neutral interstellar D at IBEX for the actual measurement conditions. We assess the number of interstellar D atom counts expected during the first three years of IBEX operation. We also simulate observations expected during an epoch of high solar activity. In addition, we calculate the expected counts of D atoms from the thin terrestrial water layer, sputtered from the IBEX-Lo conversion surface by neutral interstellar He atoms. Most D counts registered by IBEX-Lo are expected to originate from the water layer, exceeding the interstellar signal by 2 orders of magnitude. However, the sputtering should stop once the Earth leaves the portion of orbit traversed by interstellar He atoms. We identify seasons during the year when mostly the genuine interstellar D atoms are expected in the signal. During the first 3 years of IBEX operations about 2 detectable interstellar D atoms are expected. This number is comparable with the expected number of sputtered D atoms registered during the same time intervals. The most favorable conditions for the detection occur during low solar activity, in an interval including March and April each year. The detection chances could be improved by extending the instrument duty cycle, e.g., by making observations in the special deuterium mode of IBEX-Lo.
    Astronomy and Astrophysics 06/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NASA's Interstellar Boundary Explorer (IBEX) mission has recently opened a new window on the interstellar medium (ISM) by imaging neutral atoms. One "bright" feature in the sky is the interstellar wind flowing into the solar system. Composed of remnants of stellar explosions as well as primordial gas and plasma, the ISM is by no means uniform. The interaction of the local ISM with the solar wind shapes our heliospheric environment with hydrogen being the dominant component of the very local ISM. In this paper, we report on direct sampling of the neutral hydrogen of the local ISM over four years of IBEX observations. The hydrogen wind observed at 1 AU has decreased and nearly disappeared as the solar activity has increased over the last four years; the signal at 1 AU has dropped off in 2012 by a factor of ~8 to near background levels. The longitudinal offset has also increased with time presumably due to greater radiation pressure deflecting the interstellar wind. We present longitudinal and latitudinal arrival direction measurements of the bulk flow as measured over four years beginning at near solar minimum conditions. The H distribution we observe at 1 AU is expected to be different from that outside the heliopause due to ionization, photon pressure, gravity, and filtration by interactions with heliospheric plasma populations. These observations provide an important benchmark for modeling of the global heliospheric interaction. Based on these observations we suggest a further course of scientific action to observe neutral hydrogen over a full solar cycle with IBEX.
    The Astrophysical Journal 06/2013; 767(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Moon appears bright in the sky as a source of energetic neutral atoms (ENAs). These ENAs have recently been imaged over a broad energy range both from near the lunar surface, by India's Chandrayaan-1 mission (CH-1), and from a much more distant Earth orbit by NASA's Interstellar Boundary Explorer (IBEX) satellite. Both sets of observations have indicated that a relatively large fraction of the solar wind is reflected from the Moon as energetic neutral hydrogen. CH-1's angular resolution over different viewing angles of the lunar surface has enabled measurement of the emission as a function of angle. IBEX in contrast views not just a swath but a whole quadrant of the Moon as effectively a single pixel, as it subtends even at the closest approach no more than a few degrees on the sky. Here we use the scattering function measured by CH-1 to model global lunar ENA emission and combine these with IBEX observations. The deduced global reflection is modestly larger (by a factor of 1.25) when the angular scattering function is included. This provides a slightly updated IBEX estimate of AH = 0.11 +/- 0.06 for the global neutralized albedo, which is 25 % larger than the previous values of 0.09 +/- 0.05, based on an assumed uniform scattering distribution.
    06/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several years of neutral measurements by NASA/IBEX-Lo have yielded detailed observations of direct interstellar neutral helium (primary particles). Prior to IBEX, interstellar helium had been observed through UV backscattering, pickup ions, and directly by Ulysses-GAS. The IBEX measurements now also provide strong indications for the presence of secondary neutral helium that is thought to originate in the outer heliosheath from charge exchange. In order to model both primary and secondary particle populations and characterize them throughout the heliosphere, a detailed calculation method based on Keplerian orbits is used, and some sample results are presented. The helium velocity distribution functions throughout the heliosphere are characterized. In the inner heliosphere they exhibit an intricate structure, in particular downwind of the Sun where the helium focusing cone resides as well.
    06/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: NASA's Interstellar Boundary Explorer mission has had more than four years of successful science return and turned many ideas about the physics of the outer heliosphere upside-down. We review here some of the exciting discoveries made by this spacecraft, including implications for the magnetic fields and particle populations that shape our astrosphere. We focus in particular on the direct detection of the interstellar wind entering our solar system by IBEX-LO, presenting recent measurements of the neutral Hydrogen population as well as other species.
    04/2013;

Publication Stats

5k Citations
1,107.60 Total Impact Points

Institutions

  • 2014
    • University of Montana
      • Department of Physics and Astronomy
      Missoula, Montana, United States
  • 1–2014
    • University of New Hampshire
      • • Space Science Center
      • • Department of Physics
      Durham, New Hampshire, United States
  • 2013
    • University of Texas at San Antonio
      • Department of Physics and Astronomy
      San Antonio, Texas, United States
  • 2009–2013
    • Los Alamos National Laboratory
      • Space Science and Applications Group
      Los Alamos, California, United States
    • Boston University
      • Department of Astronomy
      Boston, MA, United States
  • 2010
    • Christian-Albrechts-Universität zu Kiel
      • Institute of Experimental and Applied Physics (IEAP)
      Kiel, Schleswig-Holstein, Germany
  • 2005–2009
    • Southwest Research Institute
      • Space Science and Engineering Division
      San Antonio, Texas, United States
  • 2008
    • Universität Bern
      • Physikalisches Institut
      Bern, BE, Switzerland
  • 1986–1998
    • Max Planck Institute for Extraterrestrial Physics
      Arching, Bavaria, Germany
  • 1997
    • National Institute of Standards and Technology
      Maryland, United States
  • 1996
    • Massachusetts Institute of Technology
      Cambridge, Massachusetts, United States
  • 1981–1986
    • University of Maryland, College Park
      • Department of Physics
      College Park, MD, United States