E. Moebius

University of Texas at San Antonio, San Antonio, Texas, United States

Are you E. Moebius?

Claim your profile

Publications (484)1254.33 Total impact

  • 10/2015; 813(1):L20. DOI:10.1088/2041-8205/813/1/L20
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper is one of three companion papers presenting the results of our in-depth analysis of the interstellar neutral helium (ISN He) observations carried out using the IBEX-Lo during the first six Interstellar Boundary Explorer (IBEX) observation seasons. We derive corrections for losses due to the limited throughput of the interface buffer and determine the IBEX spin-axis pointing. We develop an uncertainty system for the data, taking into account the resulting correlations between the data points. This system includes uncertainties due to Poisson statistics, background, spin-axis determination, systematic deviation of the boresight from the prescribed position, correction for the interface buffer losses, and the expected Warm Breeze (WB) signal. Subsequently, we analyze the data from 2009 to examine the role of various components of the uncertainty system. We show that the ISN He flow parameters are in good agreement with the values obtained by the original analysis. We identify the WB as the principal contributor to the global $\chi^2$ values in previous analyses. Other uncertainties have a much milder role and their contributions are comparable to each other. The application of this uncertainty system reduced the minimum $\chi^2$ value 4-fold. The obtained $\chi^2$ value, still exceeding the expected value, suggests that either the uncertainty system may still be incomplete or the adopted physical model lacks a potentially important element, which is likely an imperfect determination of the WB parameters. The derived corrections and uncertainty system are used in the accompanying paper by Bzowski et al. in an analysis of the data from six seasons.
    The Astrophysical Journal Supplement Series 10/2015; 220(2). DOI:10.1088/0067-0049/220/2/26 · 11.22 Impact Factor

  • The Astrophysical Journal Supplement Series 10/2015; 220(2):30. DOI:10.1088/0067-0049/220/2/30 · 11.22 Impact Factor

  • The Astrophysical Journal Supplement Series 10/2015; 220(2):35. DOI:10.1088/0067-0049/220/2/35 · 11.22 Impact Factor

  • The Astrophysical Journal Supplement Series 10/2015; 220(2):24. DOI:10.1088/0067-0049/220/2/24 · 11.22 Impact Factor

  • The Astrophysical Journal Supplement Series 10/2015; 220(2):22. DOI:10.1088/0067-0049/220/2/22 · 11.22 Impact Factor

  • The Astrophysical Journal Supplement Series 10/2015; 220(2):25. DOI:10.1088/0067-0049/220/2/25 · 11.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyzed observations of interstellar neutral helium (ISN~He) obtained from the Interstellar Boundary Explorer (IBEX) satellite during its first six years of operation. We used a refined version of the ISN~He simulation model, presented in the companion paper by Sokol_et al. 2015, and a sophisticated data correlation and uncertainty system and parameter fitting method, described in the companion paper by Swaczyna et al 2015. We analyzed the entire data set together and the yearly subsets, and found the temperature and velocity vector of ISN~He in front of the heliosphere. As seen in the previous studies, the allowable parameters are highly correlated and form a four-dimensional tube in the parameter space. The inflow longitudes obtained from the yearly data subsets show a spread of ~6 degree, with the other parameters varying accordingly along the parameter tube, and the minimum chi-square value is larger than expected. We found, however, that the Mach number of the ISN~He flow shows very little scatter and is thus very tightly constrained. It is in excellent agreement with the original analysis of ISN~He observations from IBEX and recent reanalyses of observations from Ulysses. We identify a possible inaccuracy in the Warm Breeze parameters as the likely cause of the scatter in the ISN~He parameters obtained from the yearly subsets, and we suppose that another component may exist in the signal, or a process that is not accounted for in the current physical model of ISN~He in front of the heliosphere. From our analysis, the inflow velocity vector, temperature, and Mach number of the flow are equal to lambda_ISNHe = 255.8 +/- 0.5 degree, beta_ISNHe = 5.16 +/- 0.10 degree, T_ISNHe = 7440 +/- 260 K, v_ISNHe = 25.8 +/- 0.4$ km/s, and M_ISNHe = 5.079 +/- 0.028, with uncertainties strongly correlated along the parameter tube.
    The Astrophysical Journal Supplement Series 10/2015; 220(2). DOI:10.1088/0067-0049/220/2/28 · 11.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neutral interstellar helium has been observed by the Interstellar Boundary Explorer (IBEX) since 2009 with a signal-to-noise ratio well above 1000. Because of the geometry of the observations, the signal observed from January to March each year is the easiest to identify. However, as we show via simulations, the portion of the signal in the range of intensities from 10^{-3} to 10^{-2} of the peak value, previously mostly left out from the analysis, may bring important information about the details of the distribution function of interstellar He gas in front of the heliosphere. In particular, these observations may inform us about possible departures of the parent interstellar He population from equilibrium. We compare the expected distribution of the signal for the canonical assumption of a single Maxwell-Boltzmann population with the distributions for a superposition of the Maxwell-Boltzmann primary population and the recently discovered Warm Breeze, and for a single primary population given by a kappa function. We identify the regions on the sky where the differences between those cases are expected to be the most visible against the background. We discuss the diagnostic potential of the fall peak of the interstellar signal, reduced by a factor of 50 due to the Compton-Getting effect but still above the detection limit of IBEX. We point out the strong energy dependence of the fall signal and suggest that searching for this signal in the data could bring an independent assessment of the low-energy measurement threshold of the IBEX-Lo sensor.
    The Astrophysical Journal Supplement Series 10/2015; 220(2). DOI:10.1088/0067-0049/220/2/29 · 11.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Interstellar Boundary Explorer (IBEX) observes enhanced ~ keV energy Energetic Neutral Atoms (ENAs) from a narrow "ribbon" that stretches across the sky and appears to be centered on the direction of the local interstellar magnetic field. The Milagro collaboration, the Asγ collaboration and the IceCube observatory have made global maps of TeV cosmic rays. This paper provides links between these disparate observations. We develop a simple diffusive model of the propagation of cosmic rays and the associated cosmic ray anisotropy due to cosmic ray streaming against the local interstellar flow. We show that the local plasma and field conditions sampled by IBEX provide characteristics that consistently explain TeV cosmic ray anisotropies. These results support models that place the interstellar magnetic field direction near the center of the IBEX ribbon.
    09/2015; 2:9-16. DOI:10.5194/ap-2-9-2015
  • J. H. Chen · N. A. Schwadron · E. Möbius · M. Gorby ·
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a modeling study of interstellar pickup ion (PUI) distributions in co-rotating interaction regions (CIRs). We consider gradual compressions associated with CIRs formed when fast speed streams overtake slower streams in the inner heliosphere. For the analysis, we adopt a simplified magnetohydrodynamic model of a CIR [Giacalone et al., 2002]. The Energetic Particle Radiation Environment Module (EPREM) [Schwadron et al., 2010], a parallelized particle numerical kinetic code, is used to model PUI distributions using the focused transport equation, including adiabatic cooling/heating, adiabatic focusing, and parallel and perpendicular diffusion. The continuous injection of PUIs is handled as a source term with a ring distribution in velocity space that is produced from the local neutral density obtained from a hot model of the interstellar neutral gas. The simulated distributions exhibit a harder spectrum in the compression region and a softer spectrum in the rarefaction region than that in undisturbed solar wind. As an additional result, a v−5 power-law tail distribution above the PUI cut-off speed (a knee in the distribution) emerges for a particular velocity gradient in the CIR. The tail above the PUI cut-off is sensitive to the CIR velocity gradient, and in one observational case studied, this relationship adequately explains the observed spectrum from 2 to 4 times the solar wind speed. This suggests that the velocity gradient associated with the CIR formation can efficiently create a seed population of PUIs before a shock forms even without stochastic acceleration. Thus, local CIR compressions without shocks may play a significant role in the acceleration process as suggested previously [e.g., Chotoo et al., 2001; Giacalone et al., 2002; Ebert et al., 2012].
    Journal of Geophysical Research: Space Physics 09/2015; DOI:10.1002/2014JA020939 · 3.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Interstellar Boundary Explorer (IBEX) has observed the interstellar neutral (ISN) gas flow over the past 6 yr during winter/spring when the Earth's motion opposes the ISN flow. Since IBEX observes the interstellar atom trajectories near their perihelion, we can use an analytical model based upon orbital mechanics to determine the interstellar parameters. Interstellar flow latitude, velocity, and temperature are coupled to the flow longitude and are restricted by the IBEX observations to a narrow tube in this parameter space. In our original analysis we found that pointing the spacecraft spin axis slightly out of the ecliptic plane significantly influences the ISN flow vector determination. Introducing the spacecraft spin axis tilt into the analytical model has shown that IBEX observations with various spin axis tilt orientations can substantially reduce the range of acceptable solutions to the ISN flow parameters as a function of flow longitude. The IBEX operations team pointed the IBEX spin axis almost exactly within the ecliptic plane during the 2012-2014 seasons, and about 5° below the ecliptic for half of the 2014 season. In its current implementation the analytical model describes the ISN flow most precisely for the spin axis orientation exactly in the ecliptic. This analysis refines the derived ISN flow parameters with a possible reconciliation between velocity vectors found with IBEX and Ulysses, resulting in a flow longitude λ∞ = 745 ± 17 and latitude β∞ = −52 ± 03, but at a substantially higher ISN temperature than previously reported.
    The Astrophysical Journal 05/2015; 804(1). DOI:10.1088/0004-637X/804/1/42 · 5.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interstellar Boundary Explorer (IBEX) measurements from 2009-2010 identified a set of possible solutions with very tight coupling between the interstellar He inflow longitude, latitude, speed, and temperature. The center of this allowable parameter space suggested that the heliosphere could be moving more slowly and in a slightly different direction with respect to the interstellar medium than indicated by earlier Ulysses observations. In this study we examine data from 2012-2014 and compare results from an analytic analysis and a detailed computer model. For observations where the IBEX spacecraft pointing is near the ecliptic plane, the latest measurements indicate a different portion of IBEX's four-dimensional tube of possible parameters—one that is more consistent with the Ulysses flow direction and speed, but with a much higher temperature. Together, the current combined IBEX/Ulysses values we obtain are V ISM∞ ~ 26 km s-1, λISM∞ ~ 75°, βISM∞ ~ -5°, and T He∞ ~ 7000-9500 K. These indicate that the heliosphere is in a substantially warmer region of the interstellar medium than thought from the earlier Ulysses observations alone, and that this warmer region may be roughly isothermal. However, measurements taken when IBEX was pointing ~5° south of the ecliptic are inconsistent with this solution and suggest a slower speed, lower temperature, and flow direction similar to IBEX's prior central values. IBEX measures much deeper into the tails of the distributions of the inflowing interstellar material than Ulysses did and these observations indicate that the heliosphere's interstellar interaction is likely far more complex and interesting than previously appreciated.
    The Astrophysical Journal 03/2015; 801(1). DOI:10.1088/0004-637X/801/1/28 · 5.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The journey of the Sun through space carries the solar system through a dynamic interstellar environment that is presently characterized by Mach 1 motion between the heliosphere and the surrounding interstellar medium (ISM). The interaction between the heliosphere and ISM is an evolving process due to the variable solar wind and to interstellar turbulence. Frisch et al. presented a meta-analysis of the historical data on the interstellar wind flowing through the heliosphere and concluded that temporal changes in the ecliptic longitude of the wind were statistically indicated by the data available in the refereed literature at the time of that writing. Lallement and Bertaux disagree with this result, and suggested, for instance, that a key instrumental response function of IBEX-Lo was incorrect and that the STEREO pickup ion data are unsuitable for diagnosing the flow of interstellar neutrals through the heliosphere. Here we show that temporal variations in the interstellar wind through the heliosphere are consistent with our knowledge of local ISM. The statistical analysis of the historical helium wind data is revisited, and a recent correction of a typographical error in the literature is incorporated into the new fits. With this correction, and including no newer IBEX results, these combined data still indicate that a change in the longitude of the interstellar neutral wind over the past forty years is statistically likely, but that a constant flow longitude is now also statistically possible. It is shown that the IBEX instrumental response function is known, and that the STEREO pickup ion data have been correctly utilized in this analysis.
    The Astrophysical Journal 03/2015; 801(1). DOI:10.1088/0004-637X/801/1/61 · 5.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The circular ribbon of enhanced energetic neutral atom (ENA) emission observed by the Interstellar Boundary Explorer (IBEX) mission remains a critical signature for understanding the interaction between the heliosphere and the interstellar medium. We study the symmetry of the ribbon flux and find strong, spectrally dependent reflection symmetry throughout the energy range 0.7-4.3 keV. The distribution of ENA flux around the ribbon is predominantly unimodal at 0.7 and 1.1 keV, distinctly bimodal at 2.7 and 4.3 keV, and a mixture of both at 1.7 keV. The bimodal flux distribution consists of partially opposing bilateral flux lobes, located at highest and lowest heliographic latitude extents of the ribbon. The vector between the ribbon center and heliospheric nose (which defines the so-called BV plane) appears to play an organizing role in the spectral dependence of the symmetry axis locations as well as asymmetric contributions to the ribbon flux. The symmetry planes at 2.7 and 4.3 keV, derived by projecting the symmetry axes to a great circle in the sky, are equivalent to tilting the heliographic equatorial plane to the ribbon center, suggesting a global heliospheric ordering. The presence and energy dependence of symmetric unilateral and bilateral flux distributions suggest strong spectral filtration from processes encountered by an ion along its journey from the source plasma to its eventual detection at IBEX.
    The Astrophysical Journal 01/2015; 799(1):68. DOI:10.1088/0004-637X/799/1/68 · 5.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Interstellar Boundary Explorer (IBEX) observes enhanced Energetic Neutral Atoms (ENAs) emission in the keV energy range from a narrow (~20° wide) "ribbon" in the sky that appears to be centered on the direction of the local interstellar (LIS) magnetic field. The Milagro collaboration, the Asγ collaboration and the IceCube observatory have recently made global maps of cosmic ray fluxes in the TeV energy range, revealing anisotropic structures ordered in part by the local interstellar magnetic field and the interstellar flow. This paper following from a recent publication in Science makes the link between these disparate observations by developing a simple model of the magnetic structure surrounding the heliosphere in the Local Interstellar Medium (LISM) that is consistent with both IBEX ENA fluxes and TeV cosmic ray anisotropies. The model also employs the revised velocity direction of the LIC derived from neutral He observations by IBEX. By modeling the propagation of cosmic rays through this magnetic field structure, we specifically show that (1) the large-scale TeV anisotropy provides a roughly consistent orientation for the local interstellar magnetic field at the center of the IBEX Ribbon and corroborates the ~ 3 μG magnitude of the local interstellar magnetic field derived from IBEX observations of the global heliosphere; (2) and small-scale structures in cosmic rays (over < 30° angular scales) are influenced by the interstellar field interaction with the heliosphere at energies < 10 TeV. Thus, we provide a link between IBEX ENA observations, IBEX neutral observations of interstellar He, and TeV cosmic ray anisotropies, which are strongly influenced by the interactions between the local interstellar magnetic field, the flow of the local interstellar plasma, and the global heliosphere.
    Journal of Physics Conference Series 01/2015; 577(1):012023. DOI:10.1088/1742-6596/577/1/012023
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Interstellar Boundary Explorer (IBEX) observes the interstellar neutral gas flow trajectories at their perihelion in Earth's orbit every year from December through early April, when the Earth's orbital motion is into the oncoming flow. These observations have defined a narrow region of possible, but very tightly coupled interstellar neutral flow parameters, with inflow speed, latitude, and temperature as well-defined functions of inflow longitude. The best- fit flow vector is different by ≈ 3° and lower by ≈ 3 km/s than obtained previously with Ulysses GAS, but the temperature is comparable. The possible coupled parameter space reaches to the previous flow vector, but only for a substantially higher temperature (by ≈ 2000 K). Along with recent pickup ion observations and including historical observations of the interstellar gas, these findings have led to a discussion, whether the interstellar gas flow into the solar system has been stable or variable over time. These intriguing possibilities call for more detailed analysis and a longer database. IBEX has accumulated observations over six interstellar flow seasons. We review key observations and refinements in the analysis, in particular, towards narrowing the uncertainties in the temperature determination. We also address ongoing attempts to optimize the flow vector determination through varying the IBEX spacecraft pointing and discuss related implications for the local interstellar cloud and its interaction with the heliosphere.
    Journal of Physics Conference Series 01/2015; 577(1):012019. DOI:10.1088/1742-6596/577/1/012019
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Interstellar Boundary Explorer (IBEX) observes the IBEX ribbon, which stretches across much of the sky observed in energetic neutral atoms (ENAs). The ribbon covers a narrow (~20°-50°) region that is believed to be roughly perpendicular to the interstellar magnetic field. Superimposed on the IBEX ribbon is the globally distributed flux that is controlled by the processes and properties of the heliosheath. This is a second study that utilizes a previously developed technique to separate ENA emissions in the ribbon from the globally distributed flux. A transparency mask is applied over the ribbon and regions of high emissions. We then solve for the globally distributed flux using an interpolation scheme. Previously, ribbon separation techniques were applied to the first year of IBEX-Hi data at and above 0.71 keV. Here we extend the separation analysis down to 0.2 keV and to five years of IBEX data enabling first maps of the ribbon and the globally distributed flux across the full sky of ENA emissions. Our analysis shows the broadening of the ribbon peak at energies below 0.71 keV and demonstrates the apparent deformation of the ribbon in the nose and heliotail. We show global asymmetries of the heliosheath, including both deflection of the heliotail and differing widths of the lobes, in context of the direction, draping, and compression of the heliospheric magnetic field. We discuss implications of the ribbon maps for the wide array of concepts that attempt to explain the ribbon's origin. Thus, we present the five-year separation of the IBEX ribbon from the globally distributed flux in preparation for a formal IBEX data release of ribbon and globally distributed flux maps to the heliophysics community.
    The Astrophysical Journal Supplement Series 10/2014; 215(1):13. DOI:10.1088/0067-0049/215/1/13 · 11.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We study the spatial and temporal distribution of hydrogen energetic neutral atoms (ENAs) from the heliosheath observed with the IBEX-Lo sensor of the Interstellar Boundary EXplorer (IBEX) from solar wind energies down to the lowest available energy (15 eV). All available IBEX-Lo data from 2009 January until 2013 June were included. The sky regions imaged when the spacecraft was outside of Earth's magnetosphere and when the Earth was moving toward the direction of observation offer a sufficient signal-to-noise ratio even at very low energies. We find that the ENA ribbon—a 20° wide region of high ENA intensities—is most prominent at solar wind energies whereas it fades at lower energies. The maximum emission in the ribbon is located near the poles for 2 keV and closer to the ecliptic plane for energies below 1 keV. This shift is an evidence that the ENA ribbon originates from the solar wind. Below 0.1 keV, the ribbon can no longer be identified against the globally distributed ENA signal. The ENA measurements in the downwind direction are affected by magnetospheric contamination below 0.5 keV, but a region of very low ENA intensities can be identified from 0.1 keV to 2 keV. The energy spectra of heliospheric ENAs follow a uniform power law down to 0.1 keV. Below this energy, they seem to become flatter, which is consistent with predictions. Due to the subtraction of local background, the ENA intensities measured with IBEX agree with the upper limit derived from Lyα observations.
    The Astrophysical Journal 10/2014; 796(1):9. DOI:10.1088/0004-637X/796/1/9 · 5.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we report on a two-year study to estimate the Ne/O abundance ratio in the gas phase of the local interstellar cloud (LIC). Based on the first two years of observations with the Interstellar Boundary Explorer, we determined the fluxes of interstellar neutral (ISN) O and Ne atoms at the Earth's orbit in spring 2009 and 2010. A temporal variation of the Ne/O abundance ratio at the Earth's orbit could be expected due to solar cycle-related effects such as changes of ionization. However, this study shows that there is no significant change in the Ne/O ratio at the Earths orbit from 2009 to 2010. We used time-dependent survival probabilities of the ISNs to calculate the Ne/O abundance ratio at the termination shock. Then we estimated the Ne/O abundance ratio in the gas phase of the LIC with the use of filtration factors and the ionization fractions. From our analysis, the Ne/O abundance ratio in the LIC is 0.33 ± 0.07, which is in agreement with the abundance ratio inferred from pickup-ion measurements.
    The Astrophysical Journal 10/2014; 795(1):97. DOI:10.1088/0004-637X/795/1/97 · 5.99 Impact Factor

Publication Stats

8k Citations
1,254.33 Total Impact Points


  • 2013-2015
    • University of Texas at San Antonio
      • Department of Physics and Astronomy
      San Antonio, Texas, United States
  • 1-2015
    • University of New Hampshire
      • • Space Science Center
      • • Department of Physics
      • • Institute for the Study of Earth, Oceans, and Space
      Дарем, New Hampshire, United States
  • 2014
    • University of Montana
      • Department of Physics and Astronomy
      Missoula, Montana, United States
  • 2012-2013
    • Los Alamos National Laboratory
      • Space Science and Applications Group
      Лос-Аламос, California, United States
  • 2010
    • Christian-Albrechts-Universität zu Kiel
      • Institute of Experimental and Applied Physics (IEAP)
      Kiel, Schleswig-Holstein, Germany
  • 1999
    • Durham University
      Durham, England, United Kingdom
  • 1986-1991
    • Max Planck Institute for Extraterrestrial Physics
      Arching, Bavaria, Germany
    • Loyola University Maryland
      Baltimore, Maryland, United States
  • 1981-1987
    • University of Maryland, College Park
      • Department of Physics
      CGS, Maryland, United States