Hugo J Snippert

University of Cambridge, Cambridge, England, United Kingdom

Are you Hugo J Snippert?

Claim your profile

Publications (19)394.95 Total impact

  • Louis Vermeulen, Hugo J Snippert
    [Show abstract] [Hide abstract]
    ABSTRACT: Intestinal stem cells (ISCs) and colorectal cancer (CRC) biology are tightly linked in many aspects. It is generally thought that ISCs are the cells of origin for a large proportion of CRCs and crucial ISC-associated signalling pathways are often affected in CRCs. Moreover, CRCs are thought to retain a cellular hierarchy that is reminiscent of the intestinal epithelium. Recent studies offer quantitative insights into the dynamics of ISC behaviour that govern homeostasis and thereby provide the necessary baseline parameters to begin to apply these analyses during the various stages of tumour development.
    Nature reviews. Cancer 06/2014; · 35.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The rapid turnover of the mammalian intestinal epithelium is supported by stem cells located around the base of the crypt. In addition to the Lgr5 marker, intestinal stem cells have been associated with other markers that are expressed heterogeneously within the crypt base region. Previous quantitative clonal fate analyses have led to the proposal that homeostasis occurs as the consequence of neutral competition between dividing stem cells. However, the short-term behaviour of individual Lgr5(+) cells positioned at different locations within the crypt base compartment has not been resolved. Here we establish the short-term dynamics of intestinal stem cells using the novel approach of continuous intravital imaging of Lgr5-Confetti mice. We find that Lgr5(+) cells in the upper part of the niche (termed 'border cells') can be passively displaced into the transit-amplifying domain, after the division of proximate cells, implying that the determination of stem-cell fate can be uncoupled from division. Through quantitative analysis of individual clonal lineages, we show that stem cells at the crypt base, termed 'central cells', experience a survival advantage over border stem cells. However, through the transfer of stem cells between the border and central regions, all Lgr5(+) cells are endowed with long-term self-renewal potential. These findings establish a novel paradigm for stem-cell maintenance in which a dynamically heterogeneous cell population is able to function long term as a single stem-cell pool.
    Nature 03/2014; 507(7492):362-5. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The concept of 'field cancerization' describes the clonal expansion of genetically altered, but morphologically normal cells that predisposes a tissue to cancer development. Here, we demonstrate that biased stem cell competition in the mouse small intestine can initiate the expansion of such clones. We quantitatively analyze how the activation of oncogenic K-ras in individual Lgr5(+) stem cells accelerates their cell division rate and creates a biased drift towards crypt clonality. K-ras mutant crypts then clonally expand within the epithelium through enhanced crypt fission, which distributes the existing Paneth cell niche over the two new crypts. Thus, an unequal competition between wild-type and mutant intestinal stem cells initiates a biased drift that leads to the clonal expansion of crypts carrying oncogenic mutations.
    EMBO Reports 12/2013; · 7.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms governing the expansion of neuron number in specific brain regions are still poorly understood. Enlarged neuron numbers in different species are often anticipated by increased numbers of progenitors dividing in the subventricular zone. Here we present live imaging analysis of radial glial cells and their progeny in the ventral telencephalon, the region with the largest subventricular zone in the murine brain during neurogenesis. We observe lineage amplification by a new type of progenitor, including bipolar radial glial cells dividing at subapical positions and generating further proliferating progeny. The frequency of this new type of progenitor is increased not only in larger clones of the mouse lateral ganglionic eminence but also in cerebral cortices of gyrated species, and upon inducing gyrification in the murine cerebral cortex. This implies key roles of this new type of radial glia in ontogeny and phylogeny.
    Nature Communications 07/2013; 4:2125. · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytes are thought to have important roles after brain injury, but their behavior has largely been inferred from postmortem analysis. To examine the mechanisms that recruit astrocytes to sites of injury, we used in vivo two-photon laser-scanning microscopy to follow the response of GFP-labeled astrocytes in the adult mouse cerebral cortex over several weeks after acute injury. Live imaging revealed a marked heterogeneity in the reaction of individual astrocytes, with one subset retaining their initial morphology, another directing their processes toward the lesion, and a distinct subset located at juxtavascular sites proliferating. Although no astrocytes actively migrated toward the injury site, selective proliferation of juxtavascular astrocytes was observed after the introduction of a lesion and was still the case, even though the extent was reduced, after astrocyte-specific deletion of the RhoGTPase Cdc42. Thus, astrocyte recruitment after injury relies solely on proliferation in a specific niche.
    Nature Neuroscience 03/2013; · 15.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In mammals, postnatal haematopoiesis occurs in the bone marrow (BM) and involves specialized microenvironments controlling haematopoietic stem cell (HSC) behaviour and, in particular, stem cell dormancy and self-renewal. While these processes have been linked to a number of different stromal cell types and signalling pathways, it is currently unclear whether BM has a homogenous architecture devoid of structural and functional partitions. Here, we show with genetic labelling techniques, high-resolution imaging and functional experiments in mice that the periphery of the adult BM cavity harbours previously unrecognized compartments with distinct properties. These units, which we have termed hemospheres, were composed of endothelial, haematopoietic and mesenchymal cells, were enriched in CD150+ CD48- putative HSCs, and enabled rapid haematopoietic cell proliferation and clonal expansion. Inducible gene targeting of the receptor tyrosine kinase VEGFR2 in endothelial cells disrupted hemospheres and, concomitantly, reduced the number of CD150+ CD48- cells. Our results identify a previously unrecognized, vessel-associated BM compartment with a specific localization and properties distinct from the marrow cavity.
    The EMBO Journal 11/2012; · 9.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multipotent stem cells and their lineage-restricted progeny drive nephron formation within the developing kidney. Here, we document expression of the adult stem cell marker Lgr5 in the developing kidney and assess the stem/progenitor identity of Lgr5(+ve) cells via in vivo lineage tracing. The appearance and localization of Lgr5(+ve) cells coincided with that of the S-shaped body around embryonic day 14. Lgr5 expression remained restricted to cell clusters within developing nephrons in the cortex until postnatal day 7, when expression was permanently silenced. In vivo lineage tracing identified Lgr5 as a marker of a stem/progenitor population within nascent nephrons dedicated to generating the thick ascending limb of Henle's loop and distal convoluted tubule. The Lgr5 surface marker and experimental models described here will be invaluable for deciphering the contribution of early nephron stem cells to developmental defects and for isolating human nephron progenitors as a prerequisite to evaluating their therapeutic potential.
    Cell Reports 09/2012; 2(2(3)-2012 Sep 27;2(3):540-52.):540-52. · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The concept that tumors are maintained by dedicated stem cells, the so-called cancer stem cell hypothesis, has attracted great interest but remains controversial. Studying mouse models, we provide direct, functional evidence for the presence of stem cell activity within primary intestinal adenomas, a precursor to intestinal cancer. By "lineage retracing" using the multicolor Cre-reporter R26R-Confetti, we demonstrate that the crypt stem cell marker Lgr5 (leucine-rich repeat-containing heterotrimeric guanine nucleotide-binding protein-coupled receptor 5) also marks a subpopulation of adenoma cells that fuel the growth of established intestinal adenomas. These Lgr5(+) cells, which represent about 5 to 10% of the cells in the adenomas, generate additional Lgr5(+) cells as well as all other adenoma cell types. The Lgr5(+) cells are intermingled with Paneth cells near the adenoma base, a pattern reminiscent of the architecture of the normal crypt niche.
    Science 08/2012; 337(6095):730-5. · 31.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, many mouse models have been developed to mark and trace the fate of adult cell populations using fluorescent proteins. High-resolution visualization of such fluorescent markers in their physiological setting is thus an important aspect of adult stem cell research. Here we describe a protocol to produce sections (150-200 μm) of near-native tissue with optimal tissue and cellular morphology by avoiding artifacts inherent in standard freezing or embedding procedures. The activity of genetically expressed fluorescent proteins is maintained, thereby enabling high-resolution three-dimensional (3D) reconstructions of fluorescent structures in virtually all types of tissues. The procedure allows immunofluorescence labeling of proteins to depths up to 50 μm, as well as a chemical 'Click-iT' reaction to detect DNA-intercalating analogs such as ethynyl deoxyuridine (EdU). Generation of near-native sections ready for imaging analysis takes approximately 2-3 h. Postsectioning processes, such as antibody labeling or EdU detection, take up to 10 h.
    Nature Protocol 07/2011; 6(8):1221-8. · 8.36 Impact Factor
  • Source
    Hugo J Snippert, Hans Clevers
    [Show abstract] [Hide abstract]
    ABSTRACT: The maintenance of stem-cell-driven tissue homeostasis requires a balance between the generation and loss of cell mass. Adult stem cells have a close relationship with the surrounding tissue--known as their niche--and thus, stem-cell studies should preferably be performed in a physiological context, rather than outside their natural environment. The mouse is an attractive model in which to study adult mammalian stem cells, as numerous experimental systems and genetic tools are available. In this review, we describe strategies commonly used to identify and functionally characterize adult stem cells in mice and discuss their potential, limitations and interpretations, as well as how they have informed our understanding of adult stem-cell biology. An accurate interpretation of physiologically relevant stem-cell assays is crucial to identify adult stem cells and elucidate how they self-renew and give rise to differentiated progeny.
    EMBO Reports 02/2011; 12(2):113-22. · 7.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Homeostasis of self-renewing small intestinal crypts results from neutral competition between Lgr5 stem cells, which are small cycling cells located at crypt bottoms. Lgr5 stem cells are interspersed between terminally differentiated Paneth cells that are known to produce bactericidal products such as lysozyme and cryptdins/defensins. Single Lgr5-expressing stem cells can be cultured to form long-lived, self-organizing crypt-villus organoids in the absence of non-epithelial niche cells. Here we find a close physical association of Lgr5 stem cells with Paneth cells in mice, both in vivo and in vitro. CD24(+) Paneth cells express EGF, TGF-α, Wnt3 and the Notch ligand Dll4, all essential signals for stem-cell maintenance in culture. Co-culturing of sorted stem cells with Paneth cells markedly improves organoid formation. This Paneth cell requirement can be substituted by a pulse of exogenous Wnt. Genetic removal of Paneth cells in vivo results in the concomitant loss of Lgr5 stem cells. In colon crypts, CD24(+) cells residing between Lgr5 stem cells may represent the Paneth cell equivalents. We conclude that Lgr5 stem cells compete for essential niche signals provided by a specialized daughter cell, the Paneth cell.
    Nature 01/2011; 469(7330):415-8. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intestinal stem cells, characterized by high Lgr5 expression, reside between Paneth cells at the small intestinal crypt base and divide every day. We have carried out fate mapping of individual stem cells by generating a multicolor Cre-reporter. As a population, Lgr5(hi) stem cells persist life-long, yet crypts drift toward clonality within a period of 1-6 months. We have collected short- and long-term clonal tracing data of individual Lgr5(hi) cells. These reveal that most Lgr5(hi) cell divisions occur symmetrically and do not support a model in which two daughter cells resulting from an Lgr5(hi) cell division adopt divergent fates (i.e., one Lgr5(hi) cell and one transit-amplifying [TA] cell per division). The cellular dynamics are consistent with a model in which the resident stem cells double their numbers each day and stochastically adopt stem or TA fates. Quantitative analysis shows that stem cell turnover follows a pattern of neutral drift dynamics.
    Cell 10/2010; 143(1):134-44. · 31.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian epidermis consists of three self-renewing compartments: the hair follicle, the sebaceous gland, and the interfollicular epidermis. We generated knock-in alleles of murine Lgr6, a close relative of the Lgr5 stem cell gene. Lgr6 was expressed in the earliest embryonic hair placodes. In adult hair follicles, Lgr6+ cells resided in a previously uncharacterized region directly above the follicle bulge. They expressed none of the known bulge stem cell markers. Prenatal Lgr6+ cells established the hair follicle, sebaceous gland, and interfollicular epidermis. Postnatally, Lgr6+ cells generated sebaceous gland and interfollicular epidermis, whereas contribution to hair lineages gradually diminished with age. Adult Lgr6+ cells executed long-term wound repair, including the formation of new hair follicles. We conclude that Lgr6 marks the most primitive epidermal stem cell.
    Science 03/2010; 327(5971):1385-9. · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study of gastric epithelial homeostasis and cancer has been hampered by the lack of stem cell markers and in vitro culture methods. The Wnt target gene Lgr5 marks stem cells in the small intestine, colon, and hair follicle. Here, we investigated Lgr5 expression in the stomach and assessed the stem cell potential of the Lgr5(+ve) cells by using in vivo lineage tracing. In neonatal stomach, Lgr5 was expressed at the base of prospective corpus and pyloric glands, whereas expression in the adult was predominantly restricted to the base of mature pyloric glands. Lineage tracing revealed these Lgr5(+ve) cells to be self-renewing, multipotent stem cells responsible for the long-term renewal of the gastric epithelium. With an in vitro culture system, single Lgr5(+ve) cells efficiently generated long-lived organoids resembling mature pyloric epithelium. The Lgr5 stem cell marker and culture method described here will be invaluable tools for accelerating research into gastric epithelial renewal, inflammation/infection, and cancer.
    Cell stem cell 01/2010; 6(1):25-36. · 23.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. We have recently demonstrated the presence of about six cycling Lgr5(+) stem cells at the bottoms of small-intestinal crypts. Here we describe the establishment of long-term culture conditions under which single crypts undergo multiple crypt fission events, while simultanously generating villus-like epithelial domains in which all differentiated cell types are present. Single sorted Lgr5(+) stem cells can also initiate these cryptvillus organoids. Tracing experiments indicate that the Lgr5(+) stem-cell hierarchy is maintained in organoids. We conclude that intestinal cryptvillus units are self-organizing structures, which can be built from a single stem cell in the absence of a non-epithelial cellular niche.
    Nature 04/2009; 459(7244):262-5. · 38.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prominin-1(Prom1)/CD133 is used, alone or in combination with other cell surface markers, to identify and isolate stem cells from various adult tissues. We recently identified leucine-rich-repeat-containing G-protein-coupled receptor 5 (Lgr5) as a marker of the intestinal stem cells from which all cellular lineages of the gastrointestinal epithelium are derived. To determine whether there is a relationship between these markers, we investigated the intestinal expression pattern of Prom1/CD133 and created knock-in mice to visualize and trace Prom1(+) cells. We analyzed Prom1 mRNA and protein expression among stem cells within intestinal crypts. Prom1/CD133 knock-in mice (Prom1(-mCherry-IRES-CreERT2) KI) were generated that express a fusion of red fluorescent protein mCherry with the C-terminus of Prom1. The knock-in allele also contains the tamoxifen-inducible CreERT2 recombinase, allowing for genetic tracing of progeny derived from Prom1-positive cells. In the small intestine, Prom1 mRNA was detected throughout the lower half of crypts and was not restricted to the rare stem cells that are sandwiched between Paneth cells. Prom1 protein was detected at the apical membranes of Lgr5(+) intestinal stem cells, but also on the transit-amplifying progenitors located above the Paneth cells. Analyses of the Prom1(-mCherry-IRES-CreERT2) KI mice showed that Prom1 is not exclusively expressed in Lgr5(+) intestinal stem cells but marks a much larger stem cell/transit-amplifying progenitor compartment. Prom-1 marks intestinal stem cells, as well as transit-amplifying progenitors, so it is not a specific marker for Lgr5(+) intestinal stem cells.
    Gastroenterology 04/2009; 136(7):2187-2194.e1. · 12.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In mouse hair follicles, a group of quiescent cells in the bulge is believed to have stem cell activity. Lgr5, a marker of intestinal stem cells, is expressed in actively cycling cells in the bulge and secondary germ of telogen hair follicles and in the lower outer root sheath of anagen hair follicles. Here we show that Lgr5(+) cells comprise an actively proliferating and multipotent stem cell population able to give rise to new hair follicles and maintain all cell lineages of the hair follicle over long periods of time. Lgr5(+) progeny repopulate other stem cell compartments in the hair follicle, supporting the existence of a stem or progenitor cell hierarchy. By marking Lgr5(+) cells during trafficking through the lower outer root sheath, we show that these cells retain stem cell properties and contribute to hair follicle growth during the next anagen. Expression analysis suggests involvement of autocrine Hedgehog signaling in maintaining the Lgr5(+) stem cell population.
    Nature Genetics 11/2008; 40(11):1291-9. · 35.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability of somatic stem cells to self-renew and differentiate into downstream lineages is dependent on specialized chromatin environments that keep stem cell-specific genes active and key differentiation factors repressed but poised for activation. The epigenetic factors that provide this type of regulation remain ill-defined. Here we provide the first evidence that the SNF2-like ATPase Mi-2beta of the Nucleosome Remodeling Deacetylase (NuRD) complex is required for maintenance of and multilineage differentiation in the early hematopoietic hierarchy. Shortly after conditional inactivation of Mi-2beta, there is an increase in cycling and a decrease in quiescence in an HSC (hematopoietic stem cell)-enriched bone marrow population. These cycling mutant cells readily differentiate into the erythroid lineage but not into the myeloid and lymphoid lineages. Together, these effects result in an initial expansion of mutant HSC and erythroid progenitors that are later depleted as more differentiated proerythroblasts accumulate at hematopoietic sites exhibiting features of erythroid leukemia. Examination of gene expression in the mutant HSC reveals changes in the expression of genes associated with self-renewal and lineage priming and a pivotal role of Mi-2beta in their regulation. Thus, Mi-2beta provides the hematopoietic system with immune cell capabilities as well as with an extensive regenerative capacity.
    Genes & Development 06/2008; 22(9):1174-89. · 12.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The intestinal epithelium and the hair follicle represent examples of rapidly self-renewing tissue in adult mammals. We have recently identified a novel stem cell gene Lgr5 expressed in multiple adult tissues. At the bottoms of crypts in small intestine and colon as well as in hair follicles, Lgr5 marks cycling cells with stem cell properties (Barker et al. 2007; Jaks et al. 2008). Using an inducible Lgr5-Cre knockin allele in conjunction with the Rosa26-LacZ Cre reporter strain, long-term lineage-tracing experiments were performed in adult mice. The Lgr5(+ve) crypt-based cell generated all epithelial lineages during a 14-month period, implying that it represents the stem cell of the small intestine and colon. Similarly, lineage tracing during a 14-month period revealed that Lgr5(+ve) cells located in the bulge of the hair follicle sustained multiple rounds of hair growth. These observations support the counterintuitive notion that Lgr5(+ve) cells are actively cycling, yet represent long-term stem cells of these adult, self-renewing tissues.
    Cold Spring Harbor Symposia on Quantitative Biology 02/2008; 73:351-6.

Publication Stats

2k Citations
394.95 Total Impact Points

Top Journals

Institutions

  • 2014
    • University of Cambridge
      Cambridge, England, United Kingdom
  • 2009–2014
    • University Medical Center Utrecht
      Utrecht, Utrecht, Netherlands
  • 2012
    • Koninklijke Nederlandse Akademie van Wetenschappen
      Amsterdamo, North Holland, Netherlands
    • Hubrecht Institute
      Utrecht, Utrecht, Netherlands
  • 2008
    • Harvard Medical School
      Boston, Massachusetts, United States