Sarah Jane Cookson

L’Institut Français de la Vigne et du Vin, Lutetia Parisorum, Île-de-France, France

Are you Sarah Jane Cookson?

Claim your profile

Publications (10)38.55 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Leaves of flowering plants are produced from the shoot apical meristem at regular intervals and they grow according to a developmental program that is determined by both genetic and environmental factors. Detailed frameworks for multiscale dynamic analyses of leaf growth have been developed in order to identify and interpret phenotypic differences caused by either genetic or environmental variations. They revealed that leaf growth dynamics are non-linearly and nonhomogeneously distributed over the lamina, in the leaf tissues and cells. The analysis of the variability in leaf growth, and its underlying processes, has recently gained momentum with the development of automated phenotyping platforms that use various technologies to record growth at different scales and at high throughput. These modern tools are likely to accelerate the characterization of gene function and the processes that underlie the control of shoot development. Combined with powerful statistical analyses, trends have emerged that may have been overlooked in low throughput analyses. However, in many examples, the increase in throughput allowed by automated platforms has led to a decrease in the spatial and/or temporal resolution of growth analyses. Concrete examples presented here indicate that simplification of the dynamic leaf system, without consideration of its spatial and temporal context, can lead to important misinterpretations of the growth phenotype. WIREs Dev Biol 2013, 2:809-821. doi: 10.1002/wdev.119 Conflict of interest: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website.
    Wiley interdisciplinary reviews. Developmental biology. 11/2013; 2(6):809-821.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have dissected the influences of apoplastic pH and cell turgor on short-term responses of leaf growth to plant water status, by using a combination of a double-barrelled pH-selective microelectrodes and a cell pressure probe. These techniques were used, together with continuous measurements of leaf elongation rate (LER), in the (hidden) elongating zone of the leaves of intact maize plants while exposing roots to various treatments. Polyethylene glycol (PEG) reduced water availability to roots, while acid load and anoxia decreased root hydraulic conductivity. During the first 30 min, acid load and anoxia induced moderate reductions in leaf growth and turgor, with no effect on leaf apoplastic pH. PEG stopped leaf growth, while turgor was only partially reduced. Rapid alkalinization of the apoplast, from pH 4.9 ± 0.3 to pH 5.8 ± 0.2 within 30 min, may have participated to this rapid growth reduction. After 60 min, leaf growth inhibition correlated well with turgor reduction across all treatments, supporting a growth limitation by hydraulics. We conclude that apoplastic alkalinization may transiently impair the control of leaf growth by cell turgor upon abrupt water stress, whereas direct hydraulic control of growth predominates under moderate conditions and after a 30-60 min delay following imposition of water stress.
    Plant Cell and Environment 04/2011; 34(8):1258-66. · 5.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study of leaf expansion began decades ago and has covered the comparison of a wide range of species, genotypes of a same species and environmental conditions or treatments. This has given rise to a large number of potential protocols for today's leaf development biologists. The final size of the leaf surface of a plant results from the integration of many different processes (which may be quantified by various developmental variables) at different organizational levels, such as, the duration and the rate of leaf production by the plant, the duration and the rate of individual leaf expansion, and also cell production and expansion in the leaf. There is much evidence to suggest that the magnitude of a variable at one organizational scale cannot be inferred to another scale because of different feedbacks from one scale to another. This chapter offers a series of protocols, which are the most commonly used in plant developmental biology, to assess quantitatively leaf expansion both at the scale of the shoot and the individual leaf. The protocols described here are for the comparison of Arabidopsis thaliana genotypes, but can be easily adapted to compare leaf expansion under different environmental conditions and in other dicotyledonous plants.
    Methods in molecular biology (Clifton, N.J.) 01/2010; 655:89-103. · 1.29 Impact Factor
  • Source
    11/2007: pages 335 - 355; , ISBN: 9780470988923
  • Source
    Sarah Jane Cookson, Karine Chenu, Christine Granier
    [Show abstract] [Hide abstract]
    ABSTRACT: Plant aerial development is well known to be affected by day length in terms of the timing and developmental stage of floral transition. Arabidopsis thaliana is a 'long day' plant in which the time to flower is delayed by short days and leaf number is increased. The aim of the work presented here was to determine the effects of different day lengths on individual leaf area expansion. The effect of flower emergence per se on the regulation of leaf expansion was also tested in this study. Care was taken to ensure that day length was the only source of micro-meteorological variation. The dynamics of individual leaf expansion were analysed in Ler and Col-0 plants grown under five day lengths in five independent experiments. Responses at cellular level were analysed in Ler plants grown under various day lengths and treatments to alter the onset of flowering. When the same leaf position was compared, the final leaf area and both the relative and absolute rates of leaf expansion were decreased by short days, whereas the duration of leaf expansion was increased. Epidermal cell number and cell area were also altered by day-length treatments and some of these responses could be mimicked by manipulating the date of flowering. Both the dynamics and cellular bases of leaf development are altered by differences in day length even when visible phenotypes are absent. To some extent, cell area and its response to day length are controlled by whole plant control mechanisms associated with the onset of flowering.
    Annals of Botany 05/2007; 99(4):703-11. · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic variability in the plasticity of leaf area expansion in response to water deficit has been reported in Arabidopsis thaliana. Here, the objective was to identify the underlying dynamic and cellular processes involved in this variability. Twenty-five accessions were subjected to identical soil water deficit treatments. In all accessions, the plasticity of leaf production was low compared with that of individual leaf expansion. A subset of accessions was selected for further dissection of individual leaf expansion into its underlying variables: the rate and duration of leaf expansion and epidermal cell number and area. In all accessions, water deficit had opposite effects on the rate and duration of leaf expansion. The accumulation of these effects was reflected in changes in final leaf area. At the cellular level, moderate water deficits had opposite effects on cell number and cell size, but more severe ones reduced both variables. The importance of these opposing effects is highlighted by the behaviour of the accession An-1, for which the compensation between the decrease in leaf expansion rate and the increase in the duration of expansion is total. This dynamic plasticity in response to water deficit is not detectable when only final measurements are done.
    Plant Cell and Environment 01/2007; 29(12):2216-27. · 5.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leaf area expansion is affected by environmental conditions because of differences in cell number and/or cell size. Increases in the DNA content (ploidy) of a cell by endoreduplication are related to its size. The aim of this work was to determine how cell ploidy interacts with the regulation of cell size and with leaf area expansion. The approach used was to grow Arabidopsis thaliana plants performing increased or decreased rounds of endoreduplication under shading and water deficit. The shading and water deficit treatments reduced final leaf area and cell number; however, cell area was increased and decreased, respectively. These differences in cell size were unrelated to alterations of the endocycle, which was reduced by these treatments. The genetic modification of the extent of endoreduplication altered leaf growth responses to shading and water deficit. An increase in the extent of endoreduplication in a leaf rendered it more sensitive to the shade treatment but less sensitive to water deficit conditions. The link between the control of whole organ and individual cell expansion under different environmental conditions was demonstrated by the correlation between the plasticity of cell size and the changes in the duration of leaf expansion.
    Plant Cell and Environment 08/2006; 29(7):1273-83. · 5.91 Impact Factor
  • Source
    Sarah Jane Cookson, Christine Granier
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that plant aerial development is affected by light intensity in terms of the date of flowering, the length of stems and petioles, and the final individual leaf area. The aim of the work presented here was to analyse how shade-induced changes in leaf development occur on a dynamic basis from the whole rosette level to that of the cells. Care was taken to ensure that light intensity was the only source of micro-meteorological variation in the study. The dynamics of leaf production, rosette expansion, individual leaf area expansion and epidermal cell expansion were analysed in Arabidopsis thaliana plants grown under two light intensities in three independent experiments. The total area of rosette leaves was reduced by the shading treatment. Both the number of leaves produced and their individual leaf areas were reduced. The reduction in leaf number was associated with a reduction in leaf initiation rate and the duration of the phase of leaf production. The reduction in individual leaf area was associated with a reduction in leaf expansion rate and an increase in the duration of leaf expansion. The changes in leaf expansion dynamics were accompanied by a decrease in epidermal cell number which was partly compensated for by an increase in epidermal cell area. Overall, the whole rosette leaf expansion rate was reduced by shading, whereas the total duration of rosette leaf expansion was unaffected. This was mainly due to the accumulation of the increases in the durations of expansion of each individual leaf which was associated with an increase in cell expansion. The dynamic analysis presented here reveals a new shade-adaptative response mediated via the control of area expansion at the cell, organ and whole plant levels.
    Annals of Botany 04/2006; 97(3):443-52. · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The high-throughput phenotypic analysis of Arabidopsis thaliana collections requires methodological progress and automation. Methods to impose stable and reproducible soil water deficits are presented and were used to analyse plant responses to water stress. Several potential complications and methodological difficulties were identified, including the spatial and temporal variability of micrometeorological conditions within a growth chamber, the difference in soil water depletion rates between accessions and the differences in developmental stage of accessions the same time after sowing. Solutions were found. Nine accessions were grown in four experiments in a rigorously controlled growth-chamber equipped with an automated system to control soil water content and take pictures of individual plants. One accession, An1, was unaffected by water deficit in terms of leaf number, leaf area, root growth and transpiration rate per unit leaf area. Methods developed here will help identify quantitative trait loci and genes involved in plant tolerance to water deficit.
    New Phytologist 02/2006; 169(3):623-35. · 6.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leaf development is affected by both internal (genetic) and external (environmental) regulatory factors. The aim of this work was to investigate how leaf growth variables are related to one another in a range of environments. The leaf growth variables of wild-type Arabidopsis thaliana and leaf development mutants (ang4, ron2-1, elo1, elo2 and elo4) were studied under different incident light treatments (light and shade). The leaves studied were altered in various leaf development variables, such as the duration of expansion, relative and absolute expansion rates, epidermal cell size, epidermal cell number and initiation rate. Final leaf area was correlated to maximal absolute leaf expansion rate and cell number, but not to duration of leaf expansion or cell size. These relationships were common to all studied genotypes and light conditions, suggesting that leaf size is determined early in development. In addition, the early variables involved in leaf development were correlated to one another, and initial relative expansion rate was negatively correlated to the duration of expansion. These relationships between the leaf development variables were used to construct a conceptual model of leaf size control.
    Plant Cell and Environment 07/2005; 28(11):1355 - 1366. · 5.91 Impact Factor