J E Loeb

Salk Institute, La Jolla, California, United States

Are you J E Loeb?

Claim your profile

Publications (4)19.37 Total impact

  • Source
    Jonathan E Loeb, Matthew D Weitzman, Thomas J Hope
    Methods in molecular biology (Clifton, N.J.) 02/2002; 183:331-40. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) evolved to stimulate the expression of intronless viral messages. To determine whether this ability to enhance expression could be useful in nonviral and heterologous viral gene delivery systems, we analyzed the ability of the WPRE to elevate the expression of a cDNA encoding the green fluorescent protein (GFP) in these contexts. We find that the WPRE can stimulate the expression of GFP when the gene is delivered by transfection or transduction with recombinant adeno-associated virus (AAV). Enhancement occurred both during transient expression and when the gene is stably incorporated into the genome of target cells. This enhancement required that the WPRE be located in cis within the GFP message, and was observed in both transformed cell lines and primary human fibroblasts. These results demonstrate that the WPRE will be an effective tool for increasing the long-term expression of transgenes in gene therapy.
    Human Gene Therapy 10/1999; 10(14):2295-305. · 3.62 Impact Factor
  • Source
    J E Donello, J E Loeb, T J Hope
    [Show abstract] [Hide abstract]
    ABSTRACT: The hepatitis B virus posttranscriptional regulatory element (HBVPRE) is a cis-acting RNA element that partially overlaps with enhancer I and is required for the cytoplasmic accumulation of HBV surface RNAs. We find that the closely related woodchuck hepatitis virus (WHV), which has been shown to lack a functional enhancer I, also contains a posttranscriptional regulatory element (WPRE). Deletion analysis suggests that the WPRE consists of three independent subelements. Comparison of the bipartite HBVPRE and tripartite WPRE activities reveals that the tripartite WPRE is two to three times more active than the bipartite HBVPRE. Mutation of a single WPRE subelement decreases WPRE activity to the level of the HBVPRE. Bipartite and tripartite chimeras of the WPRE and HBVPRE possess activities which suggest that elements containing three subelements are posttranscriptionally stronger than those containing two. These data demonstrate that the posttranscriptional regulatory element is conserved within the mammalian hepadnaviruses and that its strength is determined by the number of subelements within the RNA.
    Journal of Virology 06/1998; 72(6):5085-92. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquitously expressed nonreceptor tyrosine kinase c-Abl contains three nuclear localization signals, however, it is found in both the nucleus and the cytoplasm of proliferating fibroblasts. A rapid and transient loss of c-Abl from the nucleus is observed upon the initial adhesion of fibroblasts onto a fibronectin matrix, suggesting the possibility of nuclear export [Lewis, J., Baskaran, R. , Taagepera, S., Schwartz, M. & Wang, J. (1996) Proc. Natl. Acad. Sci. USA 93, 15174-15179]. Here we show that the C terminus of c-Abl does indeed contain a functional nuclear export signal (NES) with the characteristic leucine-rich motif. The c-Abl NES can functionally complement an NES-defective HIV Rev protein (RevDelta3NI) and can mediate the nuclear export of glutathione-S-transferase. The c-Abl NES function is sensitive to the nuclear export inhibitor leptomycin B. Mutation of a single leucine (L1064A) in the c-Abl NES abrogates export function. The NES-mutated c-Abl, termed c-Abl NES(-), is localized exclusively to the nucleus. Treatment of cells with leptomycin B also leads to the nuclear accumulation of wild-type c-Abl protein. The c-Abl NES(-) is not lost from the nucleus when detached fibroblasts are replated onto fibronectin matrix. Taken together, these results demonstrate that c-Abl shuttles continuously between the nucleus and the cytoplasm and that the rate of nuclear import and export can be modulated by the adherence status of fibroblastic cells.
    Proceedings of the National Academy of Sciences 06/1998; 95(13):7457-62. · 9.81 Impact Factor

Publication Stats

523 Citations
19.37 Total Impact Points


  • 1999
    • Salk Institute
      • Infectious Disease Laboratory
      La Jolla, California, United States
  • 1998
    • Torrey Pines Institute for Molecular Studies
      Port St. Lucie, Florida, United States