Adrian F Ochsenbein

Universität Bern, Berna, Bern, Switzerland

Are you Adrian F Ochsenbein?

Claim your profile

Publications (64)639.03 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: - Copyright © 2015, Ferrata Storti Foundation.
    Haematologica 02/2015; DOI:10.3324/haematol.2014.119602 · 5.87 Impact Factor
  • Source
    Leukemia 02/2015; DOI:10.1038/leu.2015.26 · 9.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neutropenia is probably the strongest known predisposition to infection with otherwise harmless environmental or microbiota-derived species. Because initial swarming of neutrophils at the site of infection occurs within minutes, rather than the hours required to induce "emergency granulopoiesis," the relevance of having high numbers of these cells available at any one time is obvious. We observed that germ-free (GF) animals show delayed clearance of an apathogenic bacterium after systemic challenge. In this article, we show that the size of the bone marrow myeloid cell pool correlates strongly with the complexity of the intestinal microbiota. The effect of colonization can be recapitulated by transferring sterile heat-treated serum from colonized mice into GF wild-type mice. TLR signaling was essential for microbiota-driven myelopoiesis, as microbiota colonization or transferring serum from colonized animals had no effect in GF MyD88(-/-)TICAM1(-/-) mice. Amplification of myelopoiesis occurred in the absence of microbiota-specific IgG production. Thus, very low concentrations of microbial Ags and TLR ligands, well below the threshold required for induction of adaptive immunity, sets the bone marrow myeloid cell pool size. Coevolution of mammals with their microbiota has probably led to a reliance on microbiota-derived signals to provide tonic stimulation to the systemic innate immune system and to maintain vigilance to infection. This suggests that microbiota changes observed in dysbiosis, obesity, or antibiotic therapy may affect the cross talk between hematopoiesis and the microbiota, potentially exacerbating inflammatory or infectious states in the host.
  • Source
    C Riether, C M Schürch, A F Ochsenbein
    [Show abstract] [Hide abstract]
    ABSTRACT: Hematopoietic stem cells (HSCs) are rare, multipotent cells that generate via progenitor and precursor cells of all blood lineages. Similar to normal hematopoiesis, leukemia is also hierarchically organized and a subpopulation of leukemic cells, the leukemic stem cells (LSCs), is responsible for disease initiation and maintenance and gives rise to more differentiated malignant cells. Although genetically abnormal, LSCs share many characteristics with normal HSCs, including quiescence, multipotency and self-renewal. Normal HSCs reside in a specialized microenvironment in the bone marrow (BM), the so-called HSC niche that crucially regulates HSC survival and function. Many cell types including osteoblastic, perivascular, endothelial and mesenchymal cells contribute to the HSC niche. In addition, the BM functions as primary and secondary lymphoid organ and hosts various mature immune cell types, including T and B cells, dendritic cells and macrophages that contribute to the HSC niche. Signals derived from the HSC niche are necessary to regulate demand-adapted responses of HSCs and progenitor cells after BM stress or during infection. LSCs occupy similar niches and depend on signals from the BM microenvironment. However, in addition to the cell types that constitute the HSC niche during homeostasis, in leukemia the BM is infiltrated by activated leukemia-specific immune cells. Leukemic cells express different antigens that are able to activate CD4(+) and CD8(+) T cells. It is well documented that activated T cells can contribute to the control of leukemic cells and it was hoped that these cells may be able to target and eliminate the therapy-resistant LSCs. However, the actual interaction of leukemia-specific T cells with LSCs remains ill-defined. Paradoxically, many immune mechanisms that evolved to activate emergency hematopoiesis during infection may actually contribute to the expansion and differentiation of LSCs, promoting leukemia progression. In this review, we summarize mechanisms by which the immune system regulates HSCs and LSCs.Cell Death and Differentiation advance online publication, 4 July 2014; doi:10.1038/cdd.2014.89.
    Cell Death and Differentiation 07/2014; 22(2). DOI:10.1038/cdd.2014.89 · 8.39 Impact Factor
  • Christian M Schürch, Carsten Riether, Adrian F Ochsenbein
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytotoxic CD8(+) T cells (CTLs) play a major role in host defense against intracellular pathogens, but a complete clearance of pathogens and return to homeostasis requires the regulated interplay of the innate and acquired immune systems. Here, we show that interferon γ (IFNγ) secreted by effector CTLs stimulates hematopoiesis at the level of early multipotent hematopoietic progenitor cells and induces myeloid differentiation. IFNγ did not primarily affect hematopoietic stem or progenitor cells directly. Instead, it promoted the release of hematopoietic cytokines, including interleukin 6 from bone marrow mesenchymal stromal cells (MSCs) in the hematopoietic stem cell niche, which in turn reduced the expression of the transcription factors Runx-1 and Cebpα in early hematopoietic progenitor cells and increased myeloid differentiation. Therefore, our study indicates that, during an acute viral infection, CTLs indirectly modulate early multipotent hematopoietic progenitors via MSCs in order to trigger the temporary activation of emergency myelopoiesis and promote clearance of the infection.
    Cell stem cell 02/2014; DOI:10.1016/j.stem.2014.01.002 · 22.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Survivin is a member of the inhibitor-of-apoptosis family. Essential for tumor cell survival and overexpressed in most cancers, survivin is a promising target for anti-cancer immunotherapy. Immunogenicity has been demonstrated in multiple cancers. Nonetheless, few clinical trials have demonstrated survivin-vaccine-induced immune responses. This phase I trial was conducted to test whether vaccine EMD640744, a cocktail of five HLA class I-binding survivin peptides in Montanide(®) ISA 51 VG, promotes anti-survivin T-cell responses in patients with solid cancers. The primary objective was to compare immunologic efficacy of EMD640744 at doses of 30, 100, and 300 μg. Secondary objectives included safety, tolerability, and clinical efficacy. In total, 49 patients who received ≥2 EMD640744 injections with available baseline- and ≥1 post-vaccination samples [immunologic-diagnostic (ID)-intention-to-treat] were analyzed by ELISpot- and peptide/MHC-multimer staining, revealing vaccine-activated peptide-specific T-cell responses in 31 patients (63 %). This cohort included the per study protocol relevant ID population for the primary objective, i.e., T-cell responses by ELISpot in 17 weeks following first vaccination, as well as subjects who discontinued the study before week 17 but showed responses to the treatment. No dose-dependent effects were observed. In the majority of patients (61 %), anti-survivin responses were detected only after vaccination, providing evidence for de novo induction. Best overall tumor response was stable disease (28 %). EMD640744 was well tolerated; local injection-site reactions constituted the most frequent adverse event. Vaccination with EMD640744 elicited T-cell responses against survivin peptides in the majority of patients, demonstrating the immunologic efficacy of EMD640744.
    Cancer Immunology and Immunotherapy 02/2014; DOI:10.1007/s00262-013-1516-5 · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The integrin antagonist cilengitide has been explored as an adjunct with anti-angiogenic properties to standard of care temozolomide chemoradiotherapy (TMZ/RT → TMZ) in newly diagnosed glioblastoma. Preclinical data as well as anecdotal clinical observations indicate that anti-angiogenic treatment may result in altered patterns of tumor progression. Using a standardized approach, we analyzed patterns of progression on MRI in 21 patients enrolled onto a phase 2 trial of cilengitide added to TMZ/RT → TMZ in newly diagnosed glioblastoma. Thirty patients from the experimental treatment arm of the EORTC/NCIC pivotal TMZ trial served as a reference. MRIcro software was used to map location and extent of initial preoperative and recurrent tumors on MRI of both groups into the same stereotaxic space which were then analyzed using an automated tool of image analysis. Clinical and outcome data of the cilengitide-treated patients were similar to those of the EORTC/NCIC trial except for a higher proportion of patients with a methylated O(6)-methylguanyl-DNA-methyltransferase gene promoter. Analysis of recurrence pattern revealed neither a difference in the size of the recurrent tumor nor in the distance of the recurrences from the preoperative tumor location between groups. Overall frequencies of distant recurrences were 20 % in the reference group and 19 % (4/21 patients) in the cilengitide group. Compared with TMZ/RT → TMZ alone, the addition of cilengitide does not alter patterns of progression. This analysis does not support concerns that integrin antagonism by cilengitide may induce a more aggressive phenotype at progression, but also provides no evidence for an anti-invasive activity of cilengitide in patients with newly diagnosed glioblastoma.
    Journal of Neuro-Oncology 01/2014; DOI:10.1007/s11060-014-1365-x · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Triggering receptor expressed on myeloid cells-1 (TREM-1) is a potent amplifier of pro-inflammatory innate immune reactions. While TREM-1-amplified responses likely aid an improved detection and elimination of pathogens, excessive production of cytokines and oxygen radicals can also severely harm the host. Studies addressing the pathogenic role of TREM-1 during endotoxin-induced shock or microbial sepsis have so far mostly relied on the administration of TREM-1 fusion proteins or peptides representing part of the extracellular domain of TREM-1. However, binding of these agents to the yet unidentified TREM-1 ligand could also impact signaling through alternative receptors. More importantly, controversial results have been obtained regarding the requirement of TREM-1 for microbial control. To unambiguously investigate the role of TREM-1 in homeostasis and disease, we have generated mice deficient in Trem1. Trem1(-/-) mice are viable, fertile and show no altered hematopoietic compartment. In CD4(+) T cell- and dextran sodium sulfate-induced models of colitis, Trem1(-/-) mice displayed significantly attenuated disease that was associated with reduced inflammatory infiltrates and diminished expression of pro-inflammatory cytokines. Trem1(-/-) mice also exhibited reduced neutrophilic infiltration and decreased lesion size upon infection with Leishmania major. Furthermore, reduced morbidity was observed for influenza virus-infected Trem1(-/-) mice. Importantly, while immune-associated pathologies were significantly reduced, Trem1(-/-) mice were equally capable of controlling infections with L. major, influenza virus, but also Legionella pneumophila as Trem1(+/+) controls. Our results not only demonstrate an unanticipated pathogenic impact of TREM-1 during a viral and parasitic infection, but also indicate that therapeutic blocking of TREM-1 in distinct inflammatory disorders holds considerable promise by blunting excessive inflammation while preserving the capacity for microbial control.
    PLoS Pathogens 01/2014; 10(1):e1003900. DOI:10.1371/journal.ppat.1003900 · 8.06 Impact Factor
  • Source
    Christian M Schürch, Carsten Riether, Adrian F Ochsenbein
    [Show abstract] [Hide abstract]
    ABSTRACT: Interferons not only exert a fundamental role during inflammation and immune responses but also modulate the activity of hematopoietic stem cells during homeostatic and demand-adapted hematopoiesis. Identical mechanisms regulate the homeostasis and proliferation of leukemic stem cells (LSCs). Understanding these mechanisms may lead to novel therapeutic approaches against leukemia.
    OncoImmunology 06/2013; 2(6):e24572. DOI:10.4161/onci.24572 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasia arising from the oncogenic break point cluster region/Abelson murine leukemia viral oncogene homolog 1 translocation in hematopoietic stem cells (HSCs), resulting in a leukemia stem cell (LSC). Curing CML depends on the eradication of LSCs. Unfortunately, LSCs are resistant to current treatment strategies. The host's immune system is thought to contribute to disease control, and several immunotherapy strategies are under investigation. However, the interaction of the immune system with LSCs is poorly defined. In the present study, we use a murine CML model to show that LSCs express major histocompatibility complex (MHC) and co-stimulatory molecules and are recognized and killed by leukemia-specific CD8(+) effector CTLs in vitro. In contrast, therapeutic infusions of effector CTLs into CML mice in vivo failed to eradicate LSCs but, paradoxically, increased LSC numbers. LSC proliferation and differentiation was induced by CTL-secreted IFN-γ. Effector CTLs were only able to eliminate LSCs in a situation with minimal leukemia load where CTL-secreted IFN-γ levels were low. In addition, IFN-γ increased proliferation and colony formation of CD34(+) stem/progenitor cells from CML patients in vitro. Our study reveals a novel mechanism by which the immune system contributes to leukemia progression and may be important to improve T cell-based immunotherapy against leukemia.
    Journal of Experimental Medicine 02/2013; 210(3). DOI:10.1084/jem.20121229 · 13.91 Impact Factor
  • Carsten Riether, Christian Schuerch, Adrian F. Ochsenbein
    [Show abstract] [Hide abstract]
    ABSTRACT: The immune system is able to specifically target antigen-expressing cancer cells. The promise of immunotherapy was to eliminate cancer cells without harming normal tissue and, therefore, with no or very few side effects. Immunotherapy approaches have, for several decades, been tested against several tumours, most often against malignant melanoma. However, although detectable immune responses have regularly been induced, the clinical outcome has often been disappointing. The development of molecular methods and an improved understanding of tumour immunosurveillance led to novel immunotherapy approaches in the last few years. First randomised phase III trials proved that immunotherapy can prolong survival of patients with metastatic melanoma or prostate cancer. The development in the field is very rapid and various molecules (mainly monoclonal antibodies) that activate the immune system are currently being tested in clinical trials and will possibly change our treatment of cancer. The ultimate goal of any cancer therapy and also immunotherapy is to cure cancer. However, this depends on the elimination of the disease originating cancer stem cells. Unfortunately, cancer stem cells seem resistant to most available treatment options. Recent developments in immunotherapy may allow targeting these cancer stem cells specifically in the future. In this review, we summarise the current state of immunotherapy in clinical routine and the expected developments in the near future.
    Schweizerische medizinische Wochenschrift 01/2013; 143. DOI:10.4414/smw.2013.13734 · 1.88 Impact Factor
  • Source
    Christian M Schürch, Carsten Riether, Adrian F Ochsenbein
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to "malignant" DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias.
    Frontiers in Immunology 01/2013; 4:496. DOI:10.3389/fimmu.2013.00496
  • Source
    Carsten Riether, Christian Schürch, Adrian F Ochsenbein
    [Show abstract] [Hide abstract]
    ABSTRACT: CD27 signaling can either improve T-cell function or lead to T-cell dysfunction, depending on the duration and conditions of receptor ligation. Recent studies have shown that modulating the CD70-CD27 interaction is an attractive strategy to treat solid tumors and also to directly target leukemia stem cells.
    OncoImmunology 12/2012; 1(9):1604-1606. DOI:10.4161/onci.21425 · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Signaling of the TNF receptor superfamily member CD27 activates costimulatory pathways to elicit T- and B-cell responses. CD27 signaling is regulated by the expression of its ligand CD70 on subsets of dendritic cells and lymphocytes. Here, we analyzed the role of the CD27-CD70 interaction in the immunologic control of solid tumors in Cd27-deficient mice. In tumor-bearing wild-type mice, the CD27-CD70 interaction increased the frequency of regulatory T cells (Tregs), reduced tumor-specific T-cell responses, increased angiogenesis, and promoted tumor growth. CD27 signaling reduced apoptosis of Tregs in vivo and induced CD4(+) effector T cells (Teffs) to produce interleukin-2, a key survival factor for Tregs. Consequently, the frequency of Tregs and growth of solid tumors were reduced in Cd27-deficient mice or in wild-type mice treated with monoclonal antibody to block CD27 signaling. Our findings, therefore, provide a novel mechanism by which the adaptive immune system enhances tumor growth and may offer an attractive strategy to treat solid tumors.
    Cancer Research 05/2012; 72(14):3664-76. DOI:10.1158/0008-5472.CAN-11-2791 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic myelogenous leukemia (CML) results from a chromosomal translocation in hematopoietic stem or early progenitor cells that gives rise to the oncogenic BCR/ABL fusion protein. Clinically, CML has a chronic phase that eventually evolves into an accelerated stage and blast crisis. A CML-specific immune response is thought to contribute to the control of disease. Whether the immune system can also promote disease progression is not known. In the present study, we investigated the possibility that the TNF receptor family member CD27 is present on leukemia stem cells (LSCs) and mediates effects of the immune system on CML. In a mouse model of CML, BCR/ABL+ LSCs and leukemia progenitor cells were found to express CD27. Binding of CD27 by its ligand, CD70, increased expression of Wnt target genes in LSCs by enhancing nuclear localization of active β-catenin and TRAF2- and NCK-interacting kinase (TNIK). This resulted in increased proliferation and differentiation of LSCs. Blocking CD27 signaling in LSCs delayed disease progression and prolonged survival. Furthermore, CD27 was expressed on CML stem/progenitor cells in the bone marrow of CML patients, and CD27 signaling promoted growth of BCR/ABL+ human leukemia cells by activating the Wnt pathway. Since expression of CD70 is limited to activated lymphocytes and dendritic cells, our results reveal a mechanism by which adaptive immunity contributes to leukemia progression. In addition, targeting CD27 on LSCs may represent an attractive therapeutic approach to blocking the Wnt/β-catenin pathway in CML.
    The Journal of clinical investigation 02/2012; 122(2):624-38. DOI:10.1172/JCI45977 · 13.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immune responses have the important function of host defense and protection against pathogens. However, the immune response also causes inflammation and host tissue injury, termed immunopathology. For example, hepatitis B and C virus infection in humans cause immunopathological sequel with destruction of liver cells by the host's own immune response. Similarly, after infection with lymphocytic choriomeningitis virus (LCMV) in mice, the adaptive immune response causes liver cell damage, choriomeningitis and destruction of lymphoid organ architecture. The immunopathological sequel during LCMV infection has been attributed to cytotoxic CD8(+) T cells. However, we now show that during LCMV infection CD4(+) T cells selectively induced the destruction of splenic marginal zone and caused liver cell damage with elevated serum alanin-transferase (ALT) levels. The destruction of the splenic marginal zone by CD4(+) T cells included the reduction of marginal zone B cells, marginal zone macrophages and marginal zone metallophilic macrophages. Functionally, this resulted in an impaired production of neutralizing antibodies against LCMV. Furthermore, CD4(+) T cells reduced B cells with an IgM(high)IgD(low) phenotype (transitional stage 1 and 2, marginal zone B cells), whereas other B cell subtypes such as follicular type 1 and 2 and germinal center/memory B cells were not affected. Adoptive transfer of CD4(+) T cells lacking different important effector cytokines and cytolytic pathways such as IFNγ, TNFα, perforin and Fas-FasL interaction did reveal that these cytolytic pathways are redundant in the induction of immunopathological sequel in spleen. In conclusion, our results define an important role of CD4(+) T cells in the induction of immunopathology in liver and spleen. This includes the CD4(+) T cell mediated destruction of the splenic marginal zone with consecutively impaired protective neutralizing antibody responses.
    PLoS ONE 09/2011; 6(9):e24772. DOI:10.1371/journal.pone.0024772 · 3.53 Impact Factor
  • Cancer Research 07/2011; 71(8 Supplement):5516-5516. DOI:10.1158/1538-7445.AM2011-5516 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with recurrent high-grade glioma (HGG) have a poor prognosis and there is no defined standard of care. High levels of vascular endothelial growth factor (VEGF) expressed in HGG make the anti-VEGF monoclonal antibody bevacizumab (BEV) of particular interest. In an ongoing registry data were collected from patients who have received BEV for the treatment of recurrent HGG. The primary objective was the identification of any clinical benefit as assessed by change in Karnofsky Performance Score (KPS), decreased steroid use and duration of treatment. Two hundred and twenty-five patients with HGG were included (176 glioblastoma; 49 anaplastic glioma; median age 52 years). KPS improved in 10% of patients and remained stable in 68%. Steroids were stopped in 37.6% of patients. Median duration of treatment was 5.5 months; 19.1% of patients were treated for more than 12 months. Median overall survival from beginning of BEV treatment was 8.5 months. At the time of analysis, 169 patients (75.1%) had died and 56 patients (24.9%) were alive. Only 21 patients (9.3%) discontinued treatment due to toxicity. Our data reveal valuable palliation with preservation of KPS and an option for steroid withdrawal in patients treated with BEV, supporting the role of this therapy in late-stage disease.
    Acta oncologica (Stockholm, Sweden) 06/2011; 50(5):630-5. DOI:10.3109/0284186X.2011.572913 · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Methylation of the MGMT promoter is supposed to be a predictive and prognostic factor in glioblastoma. Whether MGMT promoter methylation correlates with tumor response to temozolomide in low-grade gliomas is less clear. Therefore, we analyzed MGMT promoter methylation by a quantitative methylation-specific PCR in 22 patients with histologically verified low-grade gliomas (WHO grade II) who were treated with temozolomide (TMZ) for tumor progression. Objective tumor response, toxicity, and LOH of microsatellite markers on chromosomes 1p and 19q were analyzed. Histological classification revealed ten oligodendrogliomas, seven oligoastrocytomas, and five astrocytomas. All patients were treated with TMZ 200 mg/m2 on days 1-5 in a 4 week cycle. The median progression-free survival was 32 months. Combined LOH 1p and 19q was found in 14 patients; one patient had LOH 1p alone and one patient LOH 19q alone. The LOH status could not be determined in two patients and was normal in the remaining four. LOH 1p and/or 19q correlated with longer time to progression but not with radiological response to TMZ. MGMT promoter methylation was detectable in 20 patients by conventional PCR and quantitative analysis revealed the methylation status was between 12 and 100%. The volumetric response to chemotherapy analyzed by MRI and time to progression correlated with the level of MGMT promoter methylation. Therefore, our retrospective case series suggests that quantitative methylation-specific PCR of the MGMT promoter predicts radiological response to chemotherapy with TMZ in WHO grade II gliomas.
    Journal of Neuro-Oncology 06/2011; 103(2):343-51. DOI:10.1007/s11060-010-0395-2 · 2.79 Impact Factor
  • Journal of Clinical Oncology 11/2010; 28(33):e696-e697. DOI:10.1200/JCO.2010.31.2843 · 17.88 Impact Factor

Publication Stats

4k Citations
639.03 Total Impact Points

Institutions

  • 2003–2014
    • Universität Bern
      • Department of Clinical Research
      Berna, Bern, Switzerland
  • 2001–2013
    • Inselspital, Universitätsspital Bern
      • Department of Medical Oncology
      Berna, Bern, Switzerland
  • 2010
    • Ruhr-Universität Bochum
      Bochum, North Rhine-Westphalia, Germany
  • 2005
    • Fred Hutchinson Cancer Research Center
      • Division of Clinical Research
      Seattle, WA, United States
  • 1998–2000
    • University of Zurich
      • Institut für Experimentelle Immunologie
      Zürich, ZH, Switzerland
  • 1999
    • University Hospital Zürich
      Zürich, Zurich, Switzerland